Roncal-Jimenez, CA;
Ishimoto, T;
Lanaspa, MA;
Milagres, T;
Hernando, AA;
Jensen, T;
Miyazaki, M;
... Johnson, RJ; + view all
(2016)
Aging-associated renal disease in mice is fructokinase dependent.
American Journal of Physiology - Renal Physiology
, 311
(4)
F722-F730.
10.1152/ajprenal.00306.2016.
Preview |
Text
Roncal et al fructokinase accepted version.pdf - Accepted Version Download (909kB) | Preview |
Abstract
Aging-associated kidney disease is usually considered a degenerative process associated with aging. Recently, it has been shown that animals can produce fructose endogenously, and that this can be a mechanism for causing kidney damage in diabetic nephropathy and in association with recurrent dehydration. We therefore hypothesized that low-level metabolism of endogenous fructose might play a role in aging-associated kidney disease. Wild-type and fructokinase knockout mice were fed a normal diet for 2 yr that had minimal (<5%) fructose content. At the end of 2 yr, wild-type mice showed elevations in systolic blood pressure, mild albuminuria, and glomerular changes with mesangial matrix expansion, variable mesangiolysis, and segmental thrombi. The renal injury was amplified by provision of high-salt diet for 3 wk, as noted by the presence of glomerular hypertrophy, mesangial matrix expansion, and alpha smooth muscle actin expression, and with segmental thrombi. Fructokinase knockout mice were protected from renal injury both at baseline and after high salt intake (3 wk) compared with wild-type mice. This was associated with higher levels of active (phosphorylated serine 1177) endothelial nitric oxide synthase in their kidneys. These studies suggest that aging-associated renal disease might be due to activation of specific metabolic pathways that could theoretically be targeted therapeutically, and raise the hypothesis that aging-associated renal injury may represent a disease process as opposed to normal age-related degeneration. aging is associated with the development of glomerulosclerosis and tubulointerstitial disease in humans and rodents (12, 23, 35). Interestingly, aging-associated renal injury can vary greatly, and some individuals may show minimal reduction in kidney function and relatively preserved kidney histology with age. This raises the possibility that some of the “normal” deterioration in renal function during the aging process observed in Western cultures may be subtle renal injury driven by diet or other mechanisms. The ingestion of sugar has been associated with albuminuria in humans (3, 4, 31). Sugar contains fructose and glucose, and evidence suggests that the fructose component may be responsible for the renal injury. Specifically, fructose is metabolized in the proximal tubule by fructokinase, and this results in transient ATP depletion with the generation of oxidative stress and inflammatory mediators such as monocyte chemoattractant protein-1 (MCP-1) (5). The administration of fructose to rats results in modest proximal tubular injury, and has also been shown to accelerate preexistent kidney disease (9, 26). Fructose metabolism also results in the generation of uric acid, and this is associated with the development of afferent arteriolar disease with loss of autoregulation, resulting in glomerular hypertension (29, 30). While most studies have focused on dietary fructose, fructose can also be generated in the kidney and liver by the aldose reductase-sorbitol dehydrogenase polyol pathway, and modest fructose levels can be detected even in fasting animals (13, 21). Indeed, fructose can be generated in the kidney in diabetes or with dehydration, and in both situations may lead to local renal damage (20, 28). We hypothesized that some of the renal damage associated with aging could be due to fructose-dependent renal injury, even in the absence of dietary fructose. To investigate this hypothesis, we studied aging wild-type mice and aging mice that could not metabolize fructose via the fructokinase-dependent pathway [fructokinase knockout, also known as ketohexokinase knockout (KHK-A/C KO mice)]. KHK-A/C KO mice have a normal phenotype when young (6), but have not been examined in the aging state.
Type: | Article |
---|---|
Title: | Aging-associated renal disease in mice is fructokinase dependent |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1152/ajprenal.00306.2016 |
Publisher version: | http://doi.org/10.1152/ajprenal.00306.2016 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Chronic Kidney Disease; Aging; Fructose |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Developmental Biology and Cancer Dept |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10042962 |
Archive Staff Only
![]() |
View Item |