Li, C;
Lenhard, B;
Luscombe, NM;
(2018)
Integrated analysis sheds light on evolutionary trajectories of young transcription start sites in the human genome.
Genome Research
, 28
(5)
pp. 676-688.
10.1101/gr.231449.117.
Preview |
Text
Genome Res.-2018-Li-676-88.pdf - Published Version Download (2MB) | Preview |
Abstract
Understanding the molecular mechanisms and evolution of the gene regulatory system remains a major challenge in biology. Transcription start sites (TSSs) are especially interesting because they are central to initiating gene expression. Previous studies revealed widespread transcription initiation and fast turnover of TSSs in mammalian genomes. Yet, how new TSSs originate and how they evolve over time remain poorly understood. To address these questions, we analyzed ∼200,000 human TSSs by integrating evolutionary (inter- and intra-species) and functional genomic data, particularly focusing on evolutionarily young TSSs that emerged in the primate lineage. TSSs were grouped according to their evolutionary age using sequence alignment information as a proxy. Comparisons of young and old TSSs revealed that (1) new TSSs emerge through a combination of intrinsic factors, like the sequence properties of transposable elements and tandem repeats, and extrinsic factors such as their proximity to existing regulatory modules; (2) new TSSs undergo rapid evolution that reduces the inherent instability of repeat sequences associated with a high propensity of TSS emergence; and (3) once established, the transcriptional competence of surviving TSSs is gradually enhanced, with evolutionary changes subject to temporal (fewer regulatory changes in younger TSSs) and spatial constraints (fewer regulatory changes in more isolated TSSs). These findings advance our understanding of how regulatory innovations arise in the genome throughout evolution and highlight the genomic robustness and evolvability in these processes.
Type: | Article |
---|---|
Title: | Integrated analysis sheds light on evolutionary trajectories of young transcription start sites in the human genome |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1101/gr.231449.117 |
Publisher version: | http://dx.doi.org/10.1101/gr.231449.117 |
Language: | English |
Additional information: | Copyright © 2018 Li et al. This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Genetics, Evolution and Environment |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10047455 |
Archive Staff Only
View Item |