UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Fish Scale-Derived Scaffolds for Culturing Human Corneal Endothelial Cells

Parekh, M; Van den Bogerd, B; Zakaria, N; Ponzin, D; Ferrari, S; (2018) Fish Scale-Derived Scaffolds for Culturing Human Corneal Endothelial Cells. Stem Cells International , 2018 , Article 8146834. 10.1155/2018/8146834. Green open access

[thumbnail of 8146834.pdf] Text
8146834.pdf - Published Version

Download (20MB)

Abstract

Purpose: To investigate the biocompatibility of fish scale-derived scaffolds (FSS) with primary human corneal endothelial cells (HCEnCs). Methods: HCEnCs were isolated from 30 donor corneas in a donor-matched study and plated in precoated Lab-Tek slides (n = 15) and FSS (n = 15). Cell morphology, proliferation/migration, and glucose uptake were studied (n = 30). Hoechst, ethidium homodimer, and calcein AM (HEC) staining was performed to determine viability and toxicity (n = 6). The cell surface area was calculated based on calcein AM staining. HCEnCs were stained for ZO-1 (n = 6) to detect tight junctions and to measure cell morphology; Ki-67 (n = 6) to measure proliferating cells; and vinculin to quantify focal adhesions (n = 6). The formation of de novo extracellular matrix was analyzed using histology (n = 6). Results: HCEnCs attach and grow faster on Lab-Tek slides compared to the undulating topography of the FSS. At day 11, HCEnCs on Lab-Tek slide grew 100% confluent, while FSS was only 65% confluent (p = 0.0883), with no significant difference in glucose uptake between the two (p = 0.5181) (2.2 μg/mL in Lab-Tek versus 2.05 μg/mL in FSS). HEC staining showed no toxicity. The surface area of the cells in Lab-Tek was 409.1 μm2 compared to 452.2 μm2 on FSS, which was not significant (p = 0.5325). ZO-1 showed the presence of tight junctions in both conditions; however, hexagonality was higher (74% in Lab-Tek versus 45% in FSS; p = 0.0006) with significantly less polymorphic cells on Lab-Tek slides (8% in Lab-Tek versus 16% in FSS; p = 0.0041). Proliferative cells were detected in both conditions (4.6% in Lab-Tek versus 4.2% in FSS; p = 0.5922). Vinculin expression was marginally higher in HCEnCs cultured on Lab-Tek (234 versus 199 focal adhesions; p = 0.0507). Histological analysis did not show the formation of a basement membrane. Conclusions: HCEnCs cultured on precoated FSS form a monolayer, displaying correct morphology, cytocompatibility, and absence of toxicity. FSS needs further modification in terms of structure and surface chemistry before considering it as a potential carrier for cultured HCEnCs.

Type: Article
Title: Fish Scale-Derived Scaffolds for Culturing Human Corneal Endothelial Cells
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1155/2018/8146834
Publisher version: https://doi.org/10.1155/2018/8146834
Language: English
Additional information: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Institute of Ophthalmology
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10055326
Downloads since deposit
228Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item