Horowitz, JL;
Nesheim, L;
(2019)
Using penalized likelihood to select parameters in a random coefficients multinomial logit model.
(cemmap Working Paper
CWP50/19).
Centre for microdata methods and practice (cemmap): London, UK.
![]() |
Text
Nesheim_CW5019-Using-penalized-likelihood-to-select-parameters-in-a-random-coefficients-multinomial-logit-model.pdf Access restricted to UCL open access staff Download (449kB) |
Abstract
The multinomial logit model with random coefficients is widely used in applied research. This paper is concerned with estimating a random coefficients logit model in which the distribution of each coefficient is characterized by finitely many parameters. Some of these parameters may be zero. The paper gives conditions under which with probability approaching 1 as the sample size approaches infinity, penalized maximum likelihood (PML) estimation with the adaptive LASSO (AL) penalty function distinguishes correctly between zero and non-zero parameters in a random coefficients logit model. If one or more parameters are zero, then PML with the AL penalty function often reduces the asymptotic mean-square estimation error of any continuously differentiable function of the model’s parameters, such as a market share or an elasticity. The paper describes a method for computing the PML estimates of a random coefficients logit model. It also presents the results of Monte Carlo experiments that illustrate the numerical performance of the PML estimates. Finally, it presents the results of PML estimation of a random coefficients logit model of choice among brands of butter and margarine in the British groceries market.
Type: | Working / discussion paper |
---|---|
Title: | Using penalized likelihood to select parameters in a random coefficients multinomial logit model |
Publisher version: | https://doi.org/10.1920/wp.cem.2019.5019 |
Language: | English |
Additional information: | This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | random coefficients, logit, penalized likelihood, LASSO |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL SLASH UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS > Dept of Economics |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10060499 |
Archive Staff Only
![]() |
View Item |