UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Pan‐tropical prediction of forest structure from the largest trees

Bastin, JF; Rutishauser, E; Kellner, JR; Saatchi, S; Pélissier, R; Hérault, B; Slik, F; ... et alia, et al.; + view all (2018) Pan‐tropical prediction of forest structure from the largest trees. Global Ecology and Biogeography , 27 (11) pp. 1366-1383. 10.1111/geb.12803. Green open access

[thumbnail of Lewis_Pan-tropical prediction of forest structure from the largest trees_AAM.pdf]
Preview
Text
Lewis_Pan-tropical prediction of forest structure from the largest trees_AAM.pdf - Accepted Version

Download (1MB) | Preview

Abstract

AIM: Large tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan‐tropical model to predict plot‐level forest structure properties and biomass from only the largest trees. LOCATION: Pan‐tropical. TIME PERIOD: Early 21st century. MAJOR TAXA STUDIED: Using a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees. RESULTS: Measuring the largest trees in tropical forests enables unbiased predictions of plot‐ and site‐level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium‐sized trees (50–70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate‐diameter classes relative to other continents. MAIN CONCLUSIONS: Our approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change.

Type: Article
Title: Pan‐tropical prediction of forest structure from the largest trees
Open access status: An open access version is available from UCL Discovery
DOI: 10.1111/geb.12803
Publisher version: https://doi.org/10.1111/geb.12803
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: carbon, climate change, forest structure, large trees, pan-tropical, REDD+, tropical forest ecology
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL SLASH
UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS
UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS > Dept of Geography
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10062842
Downloads since deposit
2,888Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item