Matthews, SA;
Harra, LK;
Zharkov, S;
Green, LM;
(2015)
Spectroscopic signatures related to a sunquake.
Astrophysical Journal
, 812
(1)
, Article 35. 10.1088/0004-637X/812/1/35.
Preview |
Text
Green_Matthews_Matthews_2015_ApJ_812_35.pdf - Published Version Download (1MB) | Preview |
Abstract
The presence of flare-related acoustic emission (sunquakes (SQs)) in some flares, and only in specific locations within the flaring environment, represents a severe challenge to our current understanding of flare energy transport processes. In an attempt to contribute to understanding the origins of SQs we present a comparison of new spectral observations from Hinode's EUV imaging Spectrometer (EIS) and the Interface Region Imaging Spectrograph (IRIS) of the chromosphere, transition region, and corona above an SQ, and compare them to the spectra observed in a part of the flaring region with no acoustic signature. Evidence for the SQ is determined using both time–distance and acoustic holography methods, and we find that unlike many previous SQ detections, the signal is rather dispersed, but that the time–distance and 6 and 7 mHz sources converge at the same spatial location. We also see some evidence for different evolution at different frequencies, with an earlier peak at 7 mHz than at 6 mHz. Using EIS and IRIS spectroscopic measurements we find that in this location, at the time of the 7 mHz peak the spectral emission is significantly more intense, shows larger velocity shifts and substantially broader profiles than in the location with no SQ, and there is a good correlation between blueshifted, hot coronal, hard X-ray (HXR), and redshifted chromospheric emission, consistent with the idea of a strong downward motion driven by rapid heating by nonthermal electrons and the formation of chromospheric shocks. Exploiting the diagnostic potential of the Mg ii triplet lines, we also find evidence for a single large temperature increase deep in the atmosphere, which is consistent with this scenario. The time of the 6 mHz and time–distance peak signal coincides with a secondary peak in the energy release process, but in this case we find no evidence of HXR emission in the quake location, instead finding very broad spectral lines, strongly shifted to the red, indicating the possible presence of a significant flux of downward propagating Alfvén waves.
Type: | Article |
---|---|
Title: | Spectroscopic signatures related to a sunquake |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1088/0004-637X/812/1/35 |
Publisher version: | https://doi.org/10.1088/0004-637X/812/1/35 |
Language: | English |
Additional information: | This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Sun: atmosphere, Sun: flares, Sun: helioseismology, Sun: UV radiation |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10063940 |
Archive Staff Only
View Item |