Wilhelm, EN;
González-Alonso, J;
Chiesa, ST;
Trangmar, SJ;
Kalsi, KK;
Rakobowchuk, M;
(2017)
Whole-body heat stress and exercise stimulate the appearance of platelet microvesicles in plasma with limited influence of vascular shear stress.
Physiological Reports
, 5
(21)
, Article e13496. 10.14814/phy2.13496.
Preview |
Text
Wilhelm et al 2017 - Physiol Rep.pdf - Published Version Download (1MB) | Preview |
Abstract
Intense, large muscle mass exercise increases circulating microvesicles, but our understanding of microvesicle dynamics and mechanisms inducing their release remains limited. However, increased vascular shear stress is generally thought to be involved. Here, we manipulated exercise‐independent and exercise‐dependent shear stress using systemic heat stress with localized single‐leg cooling (low shear) followed by single‐leg knee extensor exercise with the cooled or heated leg (Study 1, n = 8) and whole‐body passive heat stress followed by cycling (Study 2, n = 8). We quantified femoral artery shear rates (SRs) and arterial and venous platelet microvesicles (PMV–CD41+) and endothelial microvesicles (EMV–CD62E+). In Study 1, mild passive heat stress while one leg remained cooled did not affect [microvesicle] (P ≥ 0.05). Single‐leg knee extensor exercise increased active leg SRs by ~12‐fold and increased arterial and venous [PMVs] by two‐ to threefold, even in the nonexercising contralateral leg (P < 0.05). In Study 2, moderate whole‐body passive heat stress increased arterial [PMV] compared with baseline (mean±SE, from 19.9 ± 1.5 to 35.5 ± 5.4 PMV.μL−1.103, P < 0.05), and cycling with heat stress increased [PMV] further in the venous circulation (from 27.5 ± 2.2 at baseline to 57.5 ± 7.2 PMV.μL−1.103 during cycling with heat stress, P < 0.05), with a tendency for increased appearance of PMV across exercising limbs. Taken together, these findings demonstrate that whole‐body heat stress may increase arterial [PMV], and intense exercise engaging either large or small muscle mass promote PMV formation locally and systemically, with no influence upon [EMV]. Local shear stress, however, does not appear to be the major stimulus modulating PMV formation in healthy humans.
Type: | Article |
---|---|
Title: | Whole-body heat stress and exercise stimulate the appearance of platelet microvesicles in plasma with limited influence of vascular shear stress |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.14814/phy2.13496 |
Publisher version: | https://doi.org/10.14814/phy2.13496 |
Language: | English |
Additional information: | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
Keywords: | Cycling, dynamic knee extensor exercise, microparticles, passive heating, shear stress |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science > Clinical Science |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10065751 |
Archive Staff Only
View Item |