Jacquillet, G;
Unwin, RJ;
(2019)
Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi).
Pflügers Archiv - European Journal of Physiology
, 471
(1)
pp. 83-98.
10.1007/s00424-018-2231-z.
Preview |
Text
Jacquillet-Unwin2019_Article_PhysiologicalRegulationOfPhosp.pdf - Published Version Download (770kB) | Preview |
Abstract
Inorganic phosphate (Pi) is an abundant element in the body and is essential for a wide variety of key biological processes. It plays an essential role in cellular energy metabolism and cell signalling, e.g. adenosine and guanosine triphosphates (ATP, GTP), and in the composition of phospholipid membranes and bone, and is an integral part of DNA and RNA. It is an important buffer in blood and urine and contributes to normal acid-base balance. Given its widespread role in almost every molecular and cellular function, changes in serum Pi levels and balance can have important and untoward effects. Pi homoeostasis is maintained by a counterbalance between dietary Pi absorption by the gut, mobilisation from bone and renal excretion. Approximately 85% of total body Pi is present in bone and only 1% is present as free Pi in extracellular fluids. In humans, extracellular concentrations of inorganic Pi vary between 0.8 and 1.2 mM, and in plasma or serum Pi exists in both its monovalent and divalent forms (H2PO4- and HPO42-). In the intestine, approximately 30% of Pi absorption is vitamin D regulated and dependent. To help maintain Pi balance, reabsorption of filtered Pi along the renal proximal tubule (PT) is via the NaPi-IIa and NaPi-IIc Na+-coupled Pi cotransporters, with a smaller contribution from the PiT-2 transporters. Endocrine factors, including, vitamin D and parathyroid hormone (PTH), as well as newer factors such as fibroblast growth factor (FGF)-23 and its coreceptor α-klotho, are intimately involved in the control of Pi homeostasis. A tight regulation of Pi is critical, since hyperphosphataemia is associated with increased cardiovascular morbidity in chronic kidney disease (CKD) and hypophosphataemia with rickets and growth retardation. This short review considers the control of Pi balance by vitamin D, PTH and Pi itself, with an emphasis on the insights gained from human genetic disorders and genetically modified mouse models.
Type: | Article |
---|---|
Title: | Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi) |
Location: | Germany |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1007/s00424-018-2231-z |
Publisher version: | https://doi.org/10.1007/s00424-018-2231-z |
Language: | English |
Additional information: | © The Author(s) 2018. Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
Keywords: | Epithelial transport, Homeostasis, Kidney physiology, Phosphate, Proximal tubule, Renal |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10066769 |
Archive Staff Only
View Item |