Strand, Jack William;
(2019)
Structure and mechanisms of formation of point defects in HfO₂, MgO and hexagonal boron nitride.
Doctoral thesis (Eng.D), UCL (University College London).
Preview |
Text
Main.pdf - Accepted Version Download (20MB) | Preview |
Abstract
In this thesis, density functional theory (DFT) methods are used to model a range of defects and defect processes in three functional dielectric materials: MgO, HfO2 and hexagonal boron nitride (hBN). My results demonstrate that a novel implementation of time-dependent DFT in CP2K provides accurate optical properties of oxygen vacancies in MgO. In amorphous (a-) HfO2 the existence of self-trapped holes and electrons is predicted. These trapped states are found to be energetically deeper than their crystalline counterparts and are separated, on average, by 8 Ȃ . Calculated optical spectra of electron traps agree well with exhaustive photo-depopulation spectroscopy experiments. It is then shown that the average formation energies of oxygen vacancies and interstitials in a-HfO2 are close to those in monoclinic (m-) HfO2, however they follow a distribution. My calculations of optical spectra of oxygen vacancies in a-HfO2 demonstrate that the characteristic blue luminescence of HfO2 is likely due to the oxygen vacancy in its +2 state. It is also found that a 3.6 eV luminescence can be caused by a radiative tunnelling transition between a hole and a +1 charged oxygen vacancy. Next, oxygen Frenkel pairs (FPs) in HfO2 are studied. A barrier of 6.6 eV must be overcome to generate a FP in m-HfO2. Charging (by injection of electrons) decreases this barrier by over 4 eV. Similar barrier reduction, due to carrier localisation, is found for FP generation in a-HfO2, however with a broader energy distribution. It is demonstrated that both formation energies and barrier heights are reduced when FPs are created adjacent to vacancies or vacancy clusters. Finally, a range of intrinsic defects in hBN layers are modelled. In particular, it is predicted that divacancies stabilise N-N and B-B bridges between layers. These bridges sufficiently lower formation energies of Frenkel pairs.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Eng.D |
Title: | Structure and mechanisms of formation of point defects in HfO₂, MgO and hexagonal boron nitride |
Event: | UCL |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2019. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10076686 |
Archive Staff Only
![]() |
View Item |