de Vries-Knoppert, WA;
Baaijen, JC;
Petzold, A;
(2019)
Patterns of retrograde axonal degeneration in the visual system.
Brain
, 142
(9)
pp. 2775-2786.
10.1093/brain/awz221.
Preview |
Text
meyer-v3-R2-accepted.pdf - Accepted Version Download (30MB) | Preview |
Abstract
Conclusive evidence for existence of acquired retrograde axonal degeneration that is truly trans-synaptic (RTD) has not yet been provided for the human visual system. Convincing data rely on experimental data of lesions to the posterior visual pathways. This study aimed to overcome the limitations of previous human studies, namely pathology to the anterior visual pathways and neurodegenerative co-morbidity. In this prospective, longitudinal cohort retinal optical coherence tomography scans were acquired before and after elective partial temporal lobe resection in 25 patients for intractable epilepsy. Newly developed region of interest-specific, retinotopic areas substantially improved on conventional reported early treatment diabetic retinopathy study (ETDRS) grid-based optical coherence tomography data. Significant inner retinal layer atrophy separated patients with normal visual fields from those who developed a visual field defect. Acquired RTD affected the retinal nerve fibre layer, ganglion cell and inner plexiform layer and stopped at the level of the inner nuclear layer. There were significant correlations between the resected brain tissue volume and the ganglion cell layer region of interest (R = -0.78, P < 0.0001) and ganglion cell inner plexiform layer region of interest (R = -0.65, P = 0.0007). In one patient, damage to the anterior visual pathway resulted in occurrence of microcystic macular oedema as recognized from experimental data. In the remaining 24 patients with true RTD, atrophy rates in the first 3 months were strongly correlated with time from surgery for the ganglion cell layer region of interest (R = -0.74, P < 0.0001) and the ganglion cell inner plexiform layer region of interest (R = -0.51, P < 0.0001). The different time course of atrophy rates observed relate to brain tissue volume resection and suggest that three distinct patterns of retrograde axonal degeneration exist: (i) direct retrograde axonal degeneration; (ii) rapid and self-terminating RTD; and (iii) prolonged RTD representing a 'penumbra', which slowly succumbs to molecularly governed spatial cellular stoichiometric relationships. We speculate that the latter could be a promising target for neuroprotection.
Type: | Article |
---|---|
Title: | Patterns of retrograde axonal degeneration in the visual system |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1093/brain/awz221 |
Publisher version: | https://doi.org/10.1093/brain/awz221 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Meyers loop, epilepsy surgery, neurodegeneration, optical coherence tomography, retinal layer segmentation |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10079636 |
Archive Staff Only
![]() |
View Item |