Watson, Jeremy M;
Ani, Uchenna D;
(2019)
Critical Infrastructure Protection Approaches: Analytical Outlook on Capacity Responsiveness to Dynamic Trends.
The PETRAS National Centre of Excellence: London, UK.
Preview |
Text
Ani_Critical Infrastructure Protection Approaches_report_VoR.pdf Download (3MB) | Preview |
Abstract
Overview: Critical infrastructures (CIs) – any asset with a functionality that is critical to normal societal functions, safety, security, economic or social wellbeing of people, and disruption or destruction of which would have a very significant negative societal impact. CIs are clearly central to the normal functioning of a nation’s economy and require to be protected from both intentional and unintentional sabotages. It is important to correctly discern and aptly manage security risks within CI domains. The protection (security) of CIs and their networks can provide clear benefits to owner organizations and nations including: enabling the attainment of a properly functioning social environment and economic market, improving service security, enabling integration to external markets, and enabling service recipients (consumers, clients, and users) to benefit from new and emerging technological developments. To effectively secure CI system, firstly, it is crucial to understand three things - what can happen, how likely it is to happen, and the consequences of such happenings. One way to achieve this is through modelling and simulations of CI attributes, functionalities, operations, and behaviours to support security analysis perspectives, and especially considering the dynamics in trends and technological adoptions. Despite the availability of several security-related CI modelling approaches (tools and techniques), trends such as inter-networking, internet and IoT integrations raise new issues. Part of the issues relate to how to effectively (more precisely and realistically) model the complex behavior of interconnected CIs and their protection as system of systems (SoS). This report attempts to address the broad goal around this issue by reviewing a sample of critical infrastructure protection approaches; comprising tools, techniques, and frameworks (methodologies). The analysis covers contexts relating to the types of critical infrastructures, applicable modelling techniques, risk management scope covered, considerations for resilience, interdependency, and policy and regulations factors. Key Findings: This research presents the following key findings: 1. There is not a single specific Critical Infrastructure Protection (CIP) approach – tool, technique, methodology or framework – that exists or emerges as a ‘fit-for-all’; to allow the modelling and simulation of cyber security risks, resilience, dependency, and impact attributes in all critical infrastructure set-ups. 2. Typically, two or more modelling techniques can be (need to be) merged to cover a broader scope and context of modelling and simulation applications (areas) to achieve desirable highlevel protection and security for critical infrastructures. 3. Empirical-based, network-based, agent-based, and system dynamics-based modelling techniques are more widely used, and all offer gains for their use. 4. The deciding factors for choosing modelling techniques often rest on; complexity of use, popularity of approach, types and objectives of user Organisation and sector. 5. The scope of modelling functions and operations also help to strike the balance between ‘specificity’ and ‘generality’ of modelling technique and approach for the gains of in-depth analysis and wider coverage respectively. 6. Interdependency and resilience modelling and simulations in critical infrastructure operations, as well as associated security and safety risks; are crucial characteristics that need to be considered and explored in revising existing or developing new CIP modelling approaches. Recommendations: Key recommendations from this research include: 1. Other critical infrastructure sectors such as emergency services, food & agriculture, and dams; need to draw lessons from the energy and transportation sectors for the successive benefits of: i. Amplifying the drive and efforts towards evaluating and understanding security risks to their infrastructure and operations. ii. Support better understanding of any associated dependencies and cascading impacts. iii. Learning how to establish effective security and resilience. iv. Support the decision-making process linked with measuring the effectiveness of preparedness activities and investments. v. Improve the behavioural security-related responses of CI to disturbances or disruptions. 2. Security-related critical infrastructure modelling approaches should be developed or revised to include wider scopes of security risk management – from identification to effectiveness evaluations, to support: i. Appropriate alignment and responsiveness to the dynamic trends introduced by new technologies such as IoT and IIoT. ii. Dynamic security risk management – especially the assessment section needs to be more dynamic than static, to address the recurrent and impactful risks that emerge in critical infrastructures.
Type: | Report |
---|---|
Title: | Critical Infrastructure Protection Approaches: Analytical Outlook on Capacity Responsiveness to Dynamic Trends |
Open access status: | An open access version is available from UCL Discovery |
Publisher version: | https://www.petrashub.org/wp-content/uploads/2019/... |
Language: | English |
Additional information: | This version is the version of record. For more information about the PETRAS research project, please visit https://petras-iot.org/. |
Keywords: | Critical Infrastructure Security, Critical Infrastructure Protection Modelling, CIP Security Risk Assessment |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Engineering Science Faculty Office UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > STEaPP |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10084940 |
Archive Staff Only
View Item |