Soundararaj, Balamurugan;
(2019)
Estimating Footfall From Passive Wi-Fi Signals: Case Study with Smart Street Sensor Project.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
final_thesis_soundararaj_ 110059982.pdf Download (13MB) | Preview |
Abstract
Measuring the distribution and dynamics of the population at granular level both spatially and temporally is crucial for understanding the structure and function of the built environment. In this era of big data, there have been numerous attempts to undertake this using the preponderance of unstructured, passive and incidental digital data which are generated from day-to-day human activities. In attempts to collect, analyse and link these widely available datasets at a massive scale, it is easy to put the privacy of the study subjects at risk. This research looks at one such data source - Wi-Fi probe requests generated by mobile devices - in detail, and processes it into granular, long-term information on number of people on the retail high streets of the United Kingdom (UK). Though this is not the first study to use this data source, the thesis specifically targets and tackles the uncertainties introduced in recent years by the implementation of features designed to protect the privacy of the users of Wi-Fi enabled mobile devices. This research starts with the design and implementation of multiple experiments to examine Wi-Fi probe requests in detail, then later describes the development of a data collection methodology to collect multiple sets of probe requests at locations across London. The thesis also details the uses of these datasets, along with the massive dataset generated by the ‘Smart Street Sensor’ project, to devise novel data cleaning and processing methodologies which result in the generation of a high quality dataset which describes the volume of people on UK retail high streets with a granularity of 5 minute intervals since August 2015 across 1000 locations (approx.) in 115 towns. This thesis also describes the compilation of a bespoke ‘Medium data toolkit’ for processing Wi-Fi probe requests (or indeed any other data with a similar size and complexity). Finally, the thesis demonstrates the value and possible applications of such footfall information through a series of case studies. By successfully avoiding the use of any personally identifiable information, the research undertaken for this thesis also demonstrates that it is feasible to prioritise the privacy of users while still deriving detailed and meaningful insights from the data generated by the users.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | Estimating Footfall From Passive Wi-Fi Signals: Case Study with Smart Street Sensor Project |
Event: | UCL (University College London) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2019. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL SLASH UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10085826 |
Archive Staff Only
![]() |
View Item |