Chazot, N;
Willmott, KR;
Lamas, G;
Freitas, AVL;
Piron-Prunier, F;
Arias, CF;
Mallet, J;
... Elias, M; + view all
(2019)
Renewed diversification following Miocene landscape turnover in a Neotropical butterfly radiation.
Global Ecology and Biogeography
, 28
(8)
pp. 1118-1132.
10.1111/geb.12919.
Preview |
Text
chazot 2018 pebas.pdf - Accepted Version Download (38MB) | Preview |
Abstract
Aim The landscape of the Neotropical region has undergone dynamic evolution throughout the Miocene, with the extensive Pebas wetland occupying western Amazonia between 23 and c. 10 Ma and the continuous uplift of the Andes mountains. The complex interaction between the Andes and Amazonia probably influenced the trajectory of Neotropical biodiversity, but evidence from time‐calibrated phylogenies of groups that diversified during this period is lacking. We investigate the role of these landscape transformations in the dynamics of diversification in the Neotropical region using a 26‐Myr‐old endemic butterfly radiation. Location Neotropics. Time period Oligocene to present. Major taxa studied Ithomiini butterflies. Methods We generated one of the most comprehensive time‐calibrated molecular phylogenies of a large clade of Neotropical insects, the butterfly tribe Ithomiini, comprising 340 species (87% of extant species) and spanning 26 Myr of diversification. We applied a large array of birth–death models and historical biogeography estimations to assess the dynamics of diversification and biotic interchanges, especially at the Amazonia–Andes interface. Results Our results suggest that the Amazonian Pebas wetland system played a major role in the timing and geography of diversification of Ithomiini, by constraining dispersal and diversification in the Amazon basin until c. 10 Ma. During the Pebas wetland period, Ithomiini diversification mostly took place in the Andes, where terrestrial habitats were not affected. An explosion of interchanges with Amazonia and with the Northern Andes accompanied the demise of the Pebas system (11–8 Ma) and was followed by local diversification in those areas, which led to a substantial renewal of diversification. Main conclusions Many studies on Neotropical diversity have focused only on the Andes, whereas we show that it is the waxing and waning of the Pebas mega‐wetland, interacting with Andean uplift, that determined the timing and patterns of regional interchanges and diversification in Ithomiini.
Type: | Article |
---|---|
Title: | Renewed diversification following Miocene landscape turnover in a Neotropical butterfly radiation |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1111/geb.12919 |
Publisher version: | https://doi.org/10.1111/geb.12919 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Neotropics, phylogeny, diversification, biogeography, Andes, Pebas system, Western-Andean Portal, Ithomiini, butterflie |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Genetics, Evolution and Environment |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10086242 |
Archive Staff Only
View Item |