UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Suzaku observation of Jupiter's X-rays around solar maximum

Numazawa, M; Ezoe, Y; Ishikawa, K; Ohashi, T; Miyoshi, Y; Kimura, T; Uchiyama, Y; ... Branduardi-Raymont, G; + view all (2019) Suzaku observation of Jupiter's X-rays around solar maximum. Publications of the Astronomical Society of Japan , 71 (5) , Article 93. 10.1093/pasj/psz077. Green open access

[thumbnail of Numazawa+_2019.pdf]
Preview
Text
Numazawa+_2019.pdf - Accepted Version

Download (451kB) | Preview

Abstract

We report on results of imaging and spectral studies of X-ray emission from Jupiter observed by Suzaku. In 2006, Suzaku found diffuse X-ray emission in 1–5 keV associated with Jovian inner radiation belts. It has been suggested that the emission is caused by the inverse-Compton scattering by ultra-relativistic electrons (∼50 MeV) in Jupiter’s magnetosphere. To confirm the existence of this emission and to understand its relation to the solar activity, we conducted an additional Suzaku observation in 2014 around the maximum of the 24th solar cycle. As a result, we successfully found the diffuse emission around Jupiter in 1–5 keV again, and also found point-like emission in 0.4–1 keV. The luminosity of the point-like emission, which was probably composed of solar X-ray scattering, charge exchange, or auroral bremsstrahlung emission, increased by a factor of ∼5 with respect to the findings from 2006, most likely due to an increase of the solar activity. The diffuse emission spectrum in the 1–5 keV band was well-fitted with a flat power-law function (Γ = 1.4 ± 0.1) as in the past observation, which supported the inverse-Compton scattering hypothesis. However, its spatial distribution changed from ∼12 × 4 Jovian radius (Rj) to ∼20 × 7 Rj. The luminosity of the diffuse emission increased by the smaller factor of ∼3. This indicates that the diffuse emission is not simply responding to the solar activity, which is also known to cause little effect on the distribution of high-energy electrons around Jupiter. Further sensitive study of the spatial and spectral distributions of the diffuse hard X-ray emission is important to understand how high-energy particles are accelerated in Jupiter’s magnetosphere.

Type: Article
Title: Suzaku observation of Jupiter's X-rays around solar maximum
Open access status: An open access version is available from UCL Discovery
DOI: 10.1093/pasj/psz077
Publisher version: https://doi.org/10.1093/pasj/psz077
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: X-rays: general, planets and satellites: general, planets and satellites: individual
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10086733
Downloads since deposit
3,040Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item