Priestley, FD;
Barlow, MJ;
De Looze, I;
Chawner, H;
(2020)
Dust masses and grain size distributions of a sample of Galactic pulsar wind nebulae.
Monthly Notices of the Royal Astronomical Society
, 491
(4)
pp. 6020-6031.
10.1093/mnras/stz3434.
Preview |
Text
stz3434.pdf - Published Version Download (896kB) | Preview |
Abstract
We calculate dust spectral energy distributions (SEDs) for a range of grain sizes and compositions, using physical properties appropriate for five pulsar wind nebulae (PWNe) from which dust emission associated with the ejecta has been detected. By fitting the observed dust SED with our models, with the number of grains of different sizes as the free parameters, we are able to determine the grain size distribution and total dust mass in each PWN. We find that all five PWNe require large (≥0.1μm) grains to make up the majority of the dust mass, with strong evidence for the presence of micron-sized or larger grains. Only two PWNe contain non-negligible quantities of small (<0.01μm) grains. The size distributions are generally well-represented by broken power laws, although our uncertainties are too large to rule out alternative shapes. We find a total dust mass of 0.02−0.28M⊙ for the Crab Nebula, depending on the composition and distance from the synchrotron source, in agreement with recent estimates. For three objects in our sample, the PWN synchrotron luminosity is insufficient to power the observed dust emission, and additional collisional heating is required, either from warm, dense gas as found in the Crab Nebula, or higher temperature shocked material. For G54.1+0.3, the dust is heated by nearby OB stars rather than the PWN. Inferred dust masses vary significantly depending on the details of the assumed heating mechanism, but in all cases large mass fractions of micron-sized grains are required.
Type: | Article |
---|---|
Title: | Dust masses and grain size distributions of a sample of Galactic pulsar wind nebulae |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1093/mnras/stz3434 |
Publisher version: | https://doi.org/10.1093/mnras/stz3434 |
Language: | English |
Additional information: | This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Dust, extinction, ISM: individual objects: Crab Nebula, ISM: supernova remnants |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10088854 |
Archive Staff Only
![]() |
View Item |