UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Chemical gradients in the Milky Way from the RAVE data I. Dwarf stars

Boeche, C; Siebert, A; Piffl, T; Just, A; Steinmetz, M; Sharma, S; Kordopatis, G; ... Zwitter, T; + view all (2013) Chemical gradients in the Milky Way from the RAVE data I. Dwarf stars. Astronomy & Astrophysics , 559 , Article A59. 10.1051/0004-6361/201322085. Green open access

[thumbnail of Seabroke_aa22085-13.pdf]
Preview
Text
Seabroke_aa22085-13.pdf - Published Version

Download (1MB) | Preview

Abstract

Aims. We aim at measuring the chemical gradients of the elements Mg, Al, Si, and Fe along the Galactic radius to provide new constraints on the chemical evolution models of the Galaxy and Galaxy models such as the Besançon model. Thanks to the large number of stars of our RAVE sample we can study how the gradients vary as function of the distance from the Galactic plane. Methods. We analysed three different samples selected from three independent datasets: a sample of 19 962 dwarf stars selected from the RAVE database, a sample of 10 616 dwarf stars selected from the Geneva-Copenhagen Survey (GCS) dataset, and a mock sample (equivalent to the RAVE sample) created by using the GALAXIA code, which is based on the Besançon model. The three samples were analysed by using the very same method for comparison purposes. We integrated the Galactic orbits and obtained the guiding radii (Rg) and the maximum distances from the Galactic plane reached by the stars along their orbits (Zmax). We measured the chemical gradients as functions of Rg at different Zmax. Results. We found that the chemical gradients of the RAVE and GCS samples are negative and show consistent trends, although they are not equal: at Zmax< 0.4 kpc and 4.5 <Rg(kpc) < 9.5, the iron gradient for the RAVE sample is d [Fe/H] /dRg = −0.065 dex kpc-1, whereas for the GCS sample it is d [Fe/H] /dRg = −0.043 dex kpc-1 with internal errors of ±0.002 and ±0.004 dex kpc-1, respectively. The gradients of the RAVE and GCS samples become flatter at larger Zmax. Conversely, the mock sample has a positive iron gradient of d [Fe/H] /dRg = +0.053 ± 0.003 dex kpc-1 at Zmax< 0.4 kpc and remains positive at any Zmax. These positive and unrealistic values originate from the lack of correlation between metallicity and tangential velocity in the Besançon model. In addition, the low metallicity and asymmetric drift of the thick disc causes a shift of the stars towards lower Rg and metallicity which, together with the thin-disc stars with a higher metallicity and Rg, generates a fictitious positive gradient of the full sample. The flatter gradient at larger Zmax found in the RAVE and the GCS samples may therefore be due to the superposition of thin- and thick-disc stars, which mimicks a flatter or positive gradient. This does not exclude the possibility that the thick disc has no chemical gradient. The discrepancies between the observational samples and the mock sample can be reduced by i) decreasing the density; ii) decreasing the vertical velocity; and iii) increasing the metallicity of the thick disc in the Besançon model.

Type: Article
Title: Chemical gradients in the Milky Way from the RAVE data I. Dwarf stars
Open access status: An open access version is available from UCL Discovery
DOI: 10.1051/0004-6361/201322085
Publisher version: https://doi.org/10.1051/0004-6361/201322085
Language: English
Additional information: This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Galaxy: abundances / Galaxy: evolution / Galaxy: structure / Galaxy: kinematics and dynamics
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10090581
Downloads since deposit
836Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item