UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Emergence of genomic diversity and recurrent mutations in SARS-CoV-2

van Dorp, L; Acman, M; Richard, D; Shaw, LP; Ford, CE; Ormond, L; Owen, CJ; ... Balloux, F; + view all (2020) Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infection, Genetics and Evolution , 83 , Article 104351. 10.1016/j.meegid.2020.104351. Green open access

[thumbnail of Balloux_Emergence of genomic diversity and recurrent mutations in SARS-CoV-2_AAM.pdf]
Preview
Text
Balloux_Emergence of genomic diversity and recurrent mutations in SARS-CoV-2_AAM.pdf - Accepted Version

Download (9MB) | Preview

Abstract

SARS-CoV-2 is a SARS-like coronavirus of likely zoonotic origin first identified in December 2019 in Wuhan, the capital of China's Hubei province. The virus has since spread globally, resulting in the currently ongoing COVID-19 pandemic. The first whole genome sequence was published on January 52,020, and thousands of genomes have been sequenced since this date. This resource allows unprecedented insights into the past demography of SARS-CoV-2 but also monitoring of how the virus is adapting to its novel human host, providing information to direct drug and vaccine design. We curated a dataset of 7666 public genome assemblies and analysed the emergence of genomic diversity over time. Our results are in line with previous estimates and point to all sequences sharing a common ancestor towards the end of 2019, supporting this as the period when SARS-CoV-2 jumped into its human host. Due to extensive transmission, the genetic diversity of the virus in several countries recapitulates a large fraction of its worldwide genetic diversity. We identify regions of the SARS-CoV-2 genome that have remained largely invariant to date, and others that have already accumulated diversity. By focusing on mutations which have emerged independently multiple times (homoplasies), we identify 198 filtered recurrent mutations in the SARS-CoV-2 genome. Nearly 80% of the recurrent mutations produced non-synonymous changes at the protein level, suggesting possible ongoing adaptation of SARS-CoV-2. Three sites in Orf1ab in the regions encoding Nsp6, Nsp11, Nsp13, and one in the Spike protein are characterised by a particularly large number of recurrent mutations (>15 events) which may signpost convergent evolution and are of particular interest in the context of adaptation of SARS-CoV-2 to the human host. We additionally provide an interactive user-friendly web-application to query the alignment of the 7666 SARS-CoV-2 genomes.

Type: Article
Title: Emergence of genomic diversity and recurrent mutations in SARS-CoV-2
Location: Netherlands
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.meegid.2020.104351
Publisher version: https://doi.org/10.1016/j.meegid.2020.104351
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Betacoronaviridae, Homoplasies, Mutation, Phylogenetics
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Genetics, Evolution and Environment
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Infection, Immunity and Inflammation Dept
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10097780
Downloads since deposit
3,496Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item