UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Novel defect in phosphatidylinositol 4‐kinase type 2‐alpha (PI4K2A) at the membrane‐enzyme interface is associated with metabolic cutis laxa

Mohamed, M; Gardeitchik, T; Balasubramaniam, S; Guerrero-Castillo, S; Dalloyaux, D; van Kraaij, S; Venselaar, H; ... Wevers, RA; + view all (2020) Novel defect in phosphatidylinositol 4‐kinase type 2‐alpha (PI4K2A) at the membrane‐enzyme interface is associated with metabolic cutis laxa. Journal of Inherited Metabolic Disease 10.1002/jimd.12255. (In press). Green open access

[thumbnail of Al-Shawi_jimd.12255.pdf]
Preview
Text
Al-Shawi_jimd.12255.pdf - Published Version

Download (1MB) | Preview

Abstract

Background: Inherited cutis laxa, or inelastic, sagging skin is a genetic condition of premature and generalized connective tissue aging, affecting various elastic components of the extracellular matrix. Several cutis laxa syndromes are inborn errors of metabolism and lead to severe neurological symptoms. Patient and methods: In a patient with cutis laxa, a choreoathetoid movement disorder, dysmorphic features and intellectual disability we performed exome sequencing to elucidate the underlying genetic defect. We identified the amino acid substitution R275W in phosphatidylinositol 4‐kinase type IIα, caused by a homozygous missense mutation in the PI4K2A gene. We used lipidomics, complexome profiling and functional studies to measure phosphatidylinositol 4‐phosphate synthesis in the patient and evaluated PI4K2A deficient mice to define a novel metabolic disorder. Results: The R275W residue, located on the surface of the protein, is involved in forming electrostatic interactions with the membrane. The catalytic activity of PI4K2A in patient fibroblasts was severely reduced and lipid mass spectrometry showed that particular acyl‐chain pools of PI4P and PI(4,5)P2 were decreased. Conclusions: Phosphoinositide lipids play a major role in intracellular signalling and trafficking and regulate the balance between proliferation and apoptosis. Phosphatidylinositol 4‐kinases such as PI4K2A mediate the first step in the main metabolic pathway that generates PI4P, PI(4,5)P2 and PI(3,4,5)P3. Although neurologic involvement is common, cutis laxa has not been reported previously in metabolic defects affecting signalling. Here we describe a patient with a complex neurological phenotype, premature aging and a mutation in PI4K2A, illustrating the importance of this enzyme in the generation of inositol lipids with particular acylation characteristics.

Type: Article
Title: Novel defect in phosphatidylinositol 4‐kinase type 2‐alpha (PI4K2A) at the membrane‐enzyme interface is associated with metabolic cutis laxa
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1002/jimd.12255
Publisher version: https://doi.org/10.1002/jimd.12255
Language: English
Additional information: This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Department of Education
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Inflammation
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10098414
Downloads since deposit
2,584Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item