Albanese, B;
Probst, S;
Ranjan, V;
Zollitsch, CW;
Pechal, M;
Wallraff, A;
Morton, JJL;
... Bertet, P; + view all
(2020)
Radiative cooling of a spin ensemble.
Nature Physics
, 16
pp. 751-755.
10.1038/s41567-020-0872-2.
Preview |
Text
1910.11092v1.pdf - Accepted Version Download (2MB) | Preview |
Abstract
Physical systems reach thermal equilibrium through energy exchange with their environment, and for spins in solids the relevant environment is almost always their host lattice. However, recent studies motivated by observations by Purcell have shown how radiative emission into a microwave cavity can become the dominant relaxation path for spins if the spin–cavity coupling is sufficiently large (such as for small-mode-volume cavities). In this regime, the cavity electromagnetic field overrides the lattice as the dominant environment, inviting the prospect of controlling the spin temperature independently from that of the lattice, by engineering a suitable cavity field. Here, we report on precisely such control over spin temperature, illustrating a novel and universal method to increase the electron spin polarization above its thermal equilibrium value (termed hyperpolarization). By switching the cavity input between resistive loads at different temperatures we can control the electron spin polarization, cooling it below the lattice temperature. Our demonstration uses donor spins in silicon coupled to a superconducting microresonator and we observe more than a twofold increase in spin polarization. This approach provides a general route to signal enhancement in electron spin resonance, or nuclear magnetic resonance through dynamical nuclear spin polarization.
Type: | Article |
---|---|
Title: | Radiative cooling of a spin ensemble |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/s41567-020-0872-2 |
Publisher version: | http://dx.doi.org/10.1038/s41567-020-0872-2 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Condensed-matter physics, Quantum physics |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > London Centre for Nanotechnology |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10099354 |
Archive Staff Only
![]() |
View Item |