UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

High-Pressure Synthesis, Crystal Structures, and Properties of A-Site Columnar-Ordered Quadruple Perovskites NaRMn2Ti4O12 with R = Sm, Eu, Gd, Dy, Ho, Y

Liu, R; Scatena, R; Khalyavin, DD; Johnson, RD; Inaguma, Y; Tanaka, M; Matsushita, Y; ... Belik, AA; + view all (2020) High-Pressure Synthesis, Crystal Structures, and Properties of A-Site Columnar-Ordered Quadruple Perovskites NaRMn2Ti4O12 with R = Sm, Eu, Gd, Dy, Ho, Y. Inorganic Chemistry , 59 (13) pp. 9065-9076. 10.1021/acs.inorgchem.0c00938. Green open access

[thumbnail of ic-2020-00938e-220520-inserted-figures.pdf]
Preview
Text
ic-2020-00938e-220520-inserted-figures.pdf - Accepted Version

Download (1MB) | Preview

Abstract

The formation of NaRMn2Ti4O12 compounds (R = rare earth) under high pressure (about 6 GPa) and high temperature (about 1750 K) conditions was studied. Such compounds with R = Sm, Eu, Gd, Dy, Ho, Y adopt an A-site columnar-ordered quadruple-perovskite structure with the generic chemical formula A2A′A″B4O12. Their crystal structures were studied by powder synchrotron X-ray and neutron diffraction between 1.5 and 300 K. They maintain a paraelectric structure with centrosymmetric space group P42/nmc (No. 137) at all temperatures, in comparison with the related CaMnTi2O6 perovskite, in which a ferroelectric transition occurs at 630 K. The centrosymmetric structure was also confirmed by second-harmonic generation. It has a cation distribution of [Na+R3+]A[Mn2+]A′[Mn2+]A″[Ti4+4]BO12 (to match with the generic chemical formula) with statistical distributions of Na+ and R3+ at the large A site and a strongly split position of Mn2+ at the square-planar A′ site. We found a C-type long-range antiferromagnetic structure of Mn2+ ions at the A′ and A″ sites below TN = 12 K for R = Dy and found that the presence of Dy3+ disturbs the long-range ordering of Mn2+ below a second transition at lower temperatures. The first magnetic transition occurs below 8–13 K in all compounds, but the second magnetic transition occurs only for R = Dy, Sm, Eu. All compounds show large dielectric constants of a possible extrinsic origin similar to that of CaCu3Ti4O12. NaRMn2Ti4O12 with R = Er–Lu crystallized in the GdFeO3-type Pnma perovskite structure, and NaRMn2Ti4O12 with R = La, Nd contained two perovskite phases: an AA′3B4O12-type Im3̅ phase and a GdFeO3-type Pnma phase.

Type: Article
Title: High-Pressure Synthesis, Crystal Structures, and Properties of A-Site Columnar-Ordered Quadruple Perovskites NaRMn2Ti4O12 with R = Sm, Eu, Gd, Dy, Ho, Y
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1021/acs.inorgchem.0c00938
Publisher version: https://doi.org/10.1021/acs.inorgchem.0c00938
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10106509
Downloads since deposit
1,536Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item