Wells, JCK;
Williams, JE;
Ward, LC;
Fewtrell, MS;
(2020)
Utility of Specific Bioelectrical Impedance Vector Analysis for the assessment of body composition in children.
Clinical Nutrition
10.1016/j.clnu.2020.07.022.
(In press).
Preview |
Text
1-s2.0-S0261561420303873-main.pdf - Accepted Version Download (2MB) | Preview |
Abstract
Summary Background & aims Bioelectrical impedance analysis (BIA) is widely considered a body composition technique suitable for routine application. However, its utility in sick or malnourished children is complicated by variability in hydration. A BIA variant termed vector analysis (BIVA) aims to resolve this, by differentiating hydration from cell mass. However, the model was only partially supported by children's data. To improve accuracy, further adjustment for body shape variability has been proposed, known as specific BIVA (BIVAspecific). Methods We re-analysed body composition data from 281 children and adolescents (46% male) aged 4–20 years of European ancestry. Measurements included anthropometry, conventional BIA, BIVA outcomes adjusted either for height (BIVAconventional), or for height and body cross-sectional area (BIVAspecific), and fat-free mass (FFM) and fat mass (FM) by the criterion 4-component model. Graphic analysis and regression analysis were used to evaluate different BIA models for predicting FFM and FM. Results Age was strongly correlated with BIVAconventional parameters, but weakly with BIVAspecific parameters. FFM correlated more strongly with BIVAconventional than with BIVAspecific parameters, whereas the opposite pattern was found for FM. In multiple regression analyses, the best prediction models combined conventional BIA with BIVAspecific parameters, explaining 97.0% and 89.8% of the variance in FFM and FM respectively. These models could be further improved by incorporating body weight. Conclusions The prediction of body composition can be improved by combining two different theoretical models, each of which appears to provide different information about the two components FFM and FM. Further work should test the utility of this approach in pediatric patients.
Type: | Article |
---|---|
Title: | Utility of Specific Bioelectrical Impedance Vector Analysis for the assessment of body composition in children |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1016/j.clnu.2020.07.022 |
Publisher version: | https://doi.org/10.1016/j.clnu.2020.07.022 |
Language: | English |
Additional information: | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
Keywords: | Body composition, Bioelectrical impedance analysis, Children, Adolescents, Bioelectrical impedance vector analysis |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Population, Policy and Practice Dept |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10106788 |
Archive Staff Only
View Item |