UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

From Microbial Communities to Distributed Computing Systems

Karkaria, BD; Treloar, NJ; Barnes, CP; Fedorec, AJH; (2020) From Microbial Communities to Distributed Computing Systems. Frontiers in Bioengineering and Biotechnology , 8 , Article 834. 10.3389/fbioe.2020.00834. Green open access

[thumbnail of Fedorec_1fbioe-08-00834.pdf]
Preview
Text
Fedorec_1fbioe-08-00834.pdf - Published Version

Download (6MB) | Preview

Abstract

A distributed biological system can be defined as a system whose components are located in different subpopulations, which communicate and coordinate their actions through interpopulation messages and interactions. We see that distributed systems are pervasive in nature, performing computation across all scales, from microbial communities to a flock of birds. We often observe that information processing within communities exhibits a complexity far greater than any single organism. Synthetic biology is an area of research which aims to design and build synthetic biological machines from biological parts to perform a defined function, in a manner similar to the engineering disciplines. However, the field has reached a bottleneck in the complexity of the genetic networks that we can implement using monocultures, facing constraints from metabolic burden and genetic interference. This makes building distributed biological systems an attractive prospect for synthetic biology that would alleviate these constraints and allow us to expand the applications of our systems into areas including complex biosensing and diagnostic tools, bioprocess control and the monitoring of industrial processes. In this review we will discuss the fundamental limitations we face when engineering functionality with a monoculture, and the key areas where distributed systems can provide an advantage. We cite evidence from natural systems that support arguments in favor of distributed systems to overcome the limitations of monocultures. Following this we conduct a comprehensive overview of the synthetic communities that have been built to date, and the components that have been used. The potential computational capabilities of communities are discussed, along with some of the applications that these will be useful for. We discuss some of the challenges with building co-cultures, including the problem of competitive exclusion and maintenance of desired community composition. Finally, we assess computational frameworks currently available to aide in the design of microbial communities and identify areas where we lack the necessary tools

Type: Article
Title: From Microbial Communities to Distributed Computing Systems
Open access status: An open access version is available from UCL Discovery
DOI: 10.3389/fbioe.2020.00834
Publisher version: https://doi.org/10.3389/fbioe.2020.00834
Language: English
Additional information: This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. http://creativecommons.org/licenses/by/4.0/
Keywords: synthetic biology, microbial consortia, biological computing, multicellular systems, biotechnology
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Cell and Developmental Biology
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10107141
Downloads since deposit
4,636Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item