Nair, RR;
Tibbit, C;
Thompson, D;
McLeod, R;
Nakhuda, A;
Simon, MM;
Baloh, RH;
... Cunningham, TJ; + view all
(2020)
Sizing, stabilising, and cloning repeat-expansions for gene targeting constructs.
Methods
10.1016/j.ymeth.2020.07.007.
(In press).
Preview |
Text
Fisher_Sizing, stabilising, and cloning repeat-expansions for gene targeting constructs_AOP.pdf - Published Version Download (8MB) | Preview |
Abstract
Aberrant microsatellite repeat-expansions at specific loci within the human genome cause several distinct, heritable, and predominantly neurological, disorders. Creating models for these diseases poses a challenge, due to the instability of such repeats in bacterial vectors, especially with large repeat expansions. Designing constructs for more precise genome engineering projects, such as engineering knock-in mice, proves a greater challenge still, since these unstable repeats require numerous cloning steps in order to introduce homology arms or selection cassettes. Here, we report our efforts to clone a large hexanucleotide repeat in the C9orf72 gene, originating from within a BAC construct, derived from a C9orf72-ALS patient. We provide detailed methods for efficient repeat sizing and growth conditions in bacteria to facilitate repeat retention during growth and sub-culturing. We report that sub-cloning into a linear vector dramatically improves stability, but is dependent on the relative orientation of DNA replication through the repeat, consistent with previous studies. We envisage the findings presented here provide a relatively straightforward route to maintaining large-range microsatellite repeat-expansions, for efficient cloning into vectors.
Archive Staff Only
View Item |