UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Crafting chaos: computational design of contraptions with complex behaviour

Roussel, Robin; (2020) Crafting chaos: computational design of contraptions with complex behaviour. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of robin_thesis_final.pdf]
Preview
Text
robin_thesis_final.pdf - Accepted Version

Download (26MB) | Preview

Abstract

The 2010s saw the democratisation of digital fabrication technologies. Although this phenomenon made fabrication more accessible, physical assemblies displaying a complex behaviour are still difficult to design. While many methods support the creation of complex shapes and assemblies, managing a complex behaviour is often assumed to be a tedious aspect of the design process. As a result, the complex parts of the behaviour are either deemed negligible (when possible) or managed directly by the software, without offering much fine-grained user control. This thesis argues that efficient methods can support designers seeking complex behaviours by increasing their level of control over these behaviours. To demonstrate this, I study two types of artistic devices that are particularly challenging to design: drawing machines, and chain reaction contraptions. These artefacts’ complex behaviour can change dramatically even as their components are moved by a small amount. The first case study aims to facilitate the exploration and progressive refinement of complex patterns generated by drawing machines under drawing-level user-defined constraints. The approach was evaluated with a user study, and several machines drawing the expected pattern were fabricated. In the second case study, I propose an algorithm to optimise the layout of complex chain reaction contraptions described by a causal graph of events in order to make them robust to uncertainty. Several machines optimised with this method were successfully assembled and run. This thesis makes the following contributions: (1) support complex behaviour specifications; (2) enable users to easily explore design variations that respect these specifications; and (3) optimise the layout of a physical assembly to maximise the probability of real-life success.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Crafting chaos: computational design of contraptions with complex behaviour
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2020. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10111807
Downloads since deposit
13,908Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item