Kamaruzzaman, NF;
Tan, LP;
Hamdan, RH;
Choong, SS;
Wong, WK;
Gibson, AJ;
Chivu, A;
(2019)
Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics?
International Journal of Molecular Sciences
, 20
(11)
, Article 2747. 10.3390/ijms20112747.
Preview |
Text
ijms-20-02747.pdf - Published Version Download (4MB) | Preview |
Abstract
Antimicrobial resistance is now considered a major global challenge; compromising medical advancements and our ability to treat infectious disease. Increased antimicrobial resistance has resulted in increased morbidity and mortality due to infectious diseases worldwide. The lack of discovery of novel compounds from natural products or new classes of antimicrobials, encouraged us to recycle discontinued antimicrobials that were previously removed from routine use due to their toxicity, e.g., colistin. Since the discovery of new classes of compounds is extremely expensive and has very little success, one strategy to overcome this issue could be the application of synthetic compounds that possess antimicrobial activities. Polymers with innate antimicrobial properties or that have the ability to be conjugated with other antimicrobial compounds create the possibility for replacement of antimicrobials either for the direct application as medicine or implanted on medical devices to control infection. Here, we provide the latest update on research related to antimicrobial polymers in the context of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. We summarise polymer subgroups: compounds containing natural peptides, halogens, phosphor and sulfo derivatives and phenol and benzoic derivatives, organometalic polymers, metal nanoparticles incorporated into polymeric carriers, dendrimers and polymer-based guanidine. We intend to enhance understanding in the field and promote further work on the development of polymer based antimicrobial compounds.
Type: | Article |
---|---|
Title: | Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? |
Location: | Switzerland |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3390/ijms20112747 |
Publisher version: | https://doi.org/10.3390/ijms20112747 |
Language: | English |
Additional information: | This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited https://creativecommons.org/licenses/by/4.0/ |
Keywords: | antimicrobial resistance; antimicrobial polymers; ESKAPE pathogens |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci > Department of Surgical Biotechnology |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10118710 |
Archive Staff Only
![]() |
View Item |