Moscoso, A;
Grothe, MJ;
Schöll, M;
Alzheimer’s Disease Neuroimaging Initiative;
(2021)
Reduced [¹⁸F]flortaucipir retention in white matter hyperintensities compared to normal-appearing white matter.
European Journal of Nuclear Medicine and Molecular Imaging
, 48
pp. 2283-2294.
10.1007/s00259-021-05195-5.
Preview |
Text
Scholl_manuscript_ejnmmi_R1_final.pdf - Accepted Version Download (251kB) | Preview |
Abstract
PURPOSE: Recent research has suggested the use of white matter (WM) reference regions for longitudinal tau-PET imaging. However, tau tracers display affinity for the β-sheet structure formed by myelin, and thus WM lesions might influence tracer retention. Here, we explored whether the tau-sensitive tracer [18F]flortaucipir shows reduced retention in WM hyperintensities (WMH) and how this retention changes over time. METHODS: We included 707 participants from the Alzheimer's Disease Neuroimaging Initiative with available [18F]flortaucipir-PET and structural and FLAIR MRI scans. WM segments and WMH were automatically delineated in the structural MRI and FLAIR scans, respectively. [18F]flortaucipir standardized uptake value ratios (SUVR) of WMH and normal-appearing WM (NAWM) were calculated using the inferior cerebellar grey matter as reference region, and a 3-mm erosion was applied to the combined NAWM and WMH masks to avoid partial volume effects. Longitudinal [18F]flortaucipir SUVR changes in NAWM and WMH were estimated using linear mixed models. The percent variance of WM-referenced cortical [18F]flortaucipir SUVRs explained by longitudinal changes in the WM reference region was estimated with the R2 coefficient. RESULTS: Compared to NAWM, WMH areas displayed significantly reduced [18F]flortaucipir SUVR, independent of cognitive impairment or Aβ status (mean difference = 0.14 SUVR, p < 0.001). Older age was associated with lower [18F]flortaucipir SUVR in both NAWM (- 0.002 SUVR/year, p = 0.005) and WMH (- 0.004 SUVR/year, p < 0.001). Longitudinally, [18F]flortaucipir SUVR decreased in NAWM (- 0.008 SUVR/year, p = 0.03) and even more so in WMH (- 0.02 SUVR/year, p < 0.001). Between 17% and 66% of the variance of longitudinal changes in cortical WM-referenced [18F]flortaucipir SUVRs were explained by longitudinal changes in the reference region. CONCLUSIONS: [18F]flortaucipir retention in the WM decreases over time and is influenced by the presence of WMH, supporting the hypothesis that [18F]flortaucipir retention in the WM is partially myelin-dependent. These findings have implications for the use of WM reference regions for [18F]flortaucipir-PET imaging.
Archive Staff Only
View Item |