Liu, L;
Li, Y;
Kuang, Z;
Xue, J;
Chen, Y;
Yang, W;
Liao, Q;
(2021)
Towards Impartial Multi-task Learning.
In:
Proceedings of the International Conference on Learning Representations (ICLR 2021).
ICLR: Virtual event.
Preview |
Text
LiyangLiu-ICLR2021-accepted-Jan25.pdf - Accepted Version Download (41MB) | Preview |
Abstract
Multi-task learning (MTL) has been widely used in representation learning. However, naively training all tasks simultaneously may lead to the partial training issue, where specific tasks are trained more adequately than others. In this paper, we propose to learn multiple tasks impartially. Specifically, for the task-shared parameters, we optimize the scaling factors via a closed-form solution, such that the aggregated gradient (sum of raw gradients weighted by the scaling factors) has equal projections onto individual tasks. For the task-specific parameters, we dynamically weigh the task losses so that all of them are kept at a comparable scale. Further, we find the above gradient balance and loss balance are complementary and thus propose a hybrid balance method to further improve the performance. Our impartial multi-task learning (IMTL) can be end-to-end trained without any heuristic hyper-parameter tuning, and is general to be applied on all kinds of losses without any distribution assumption. Moreover, our IMTL can converge to similar results even when the task losses are designed to have different scales, and thus it is scale-invariant. We extensively evaluate our IMTL on the standard MTL benchmarks including Cityscapes, NYUv2 and CelebA. It outperforms existing loss weighting methods under the same experimental settings.
Type: | Proceedings paper |
---|---|
Title: | Towards Impartial Multi-task Learning |
Event: | International Conference on Learning Representations (ICLR 2021) |
Dates: | 04 May 2021 - 07 May 2021 |
Open access status: | An open access version is available from UCL Discovery |
Publisher version: | https://iclr.cc/ |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Statistical Science |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10120667 |
Archive Staff Only
View Item |