UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

The importance of transdiagnostic symptom level assessment to understanding prognosis for depressed adults: analysis of data from six randomised control trials

O'Driscoll, C; Buckman, JEJ; Fried, EI; Saunders, R; Cohen, ZD; Ambler, G; DeRubeis, RJ; ... Pilling, S; + view all (2021) The importance of transdiagnostic symptom level assessment to understanding prognosis for depressed adults: analysis of data from six randomised control trials. BMC Medicine , 19 (1) , Article 109. 10.1186/s12916-021-01971-0. Green open access

[thumbnail of s12916-021-01971-0.pdf]
Preview
Text
s12916-021-01971-0.pdf - Published Version

Download (1MB) | Preview

Abstract

BACKGROUND: Depression is commonly perceived as a single underlying disease with a number of potential treatment options. However, patients with major depression differ dramatically in their symptom presentation and comorbidities, e.g. with anxiety disorders. There are also large variations in treatment outcomes and associations of some anxiety comorbidities with poorer prognoses, but limited understanding as to why, and little information to inform the clinical management of depression. There is a need to improve our understanding of depression, incorporating anxiety comorbidity, and consider the association of a wide range of symptoms with treatment outcomes. METHOD: Individual patient data from six RCTs of depressed patients (total n = 2858) were used to estimate the differential impact symptoms have on outcomes at three post intervention time points using individual items and sum scores. Symptom networks (graphical Gaussian model) were estimated to explore the functional relations among symptoms of depression and anxiety and compare networks for treatment remitters and those with persistent symptoms to identify potential prognostic indicators. RESULTS: Item-level prediction performed similarly to sum scores when predicting outcomes at 3 to 4 months and 6 to 8 months, but outperformed sum scores for 9 to 12 months. Pessimism emerged as the most important predictive symptom (relative to all other symptoms), across these time points. In the network structure at study entry, symptoms clustered into physical symptoms, cognitive symptoms, and anxiety symptoms. Sadness, pessimism, and indecision acted as bridges between communities, with sadness and failure/worthlessness being the most central (i.e. interconnected) symptoms. Connectivity of networks at study entry did not differ for future remitters vs. those with persistent symptoms. CONCLUSION: The relative importance of specific symptoms in association with outcomes and the interactions within the network highlight the value of transdiagnostic assessment and formulation of symptoms to both treatment and prognosis. We discuss the potential for complementary statistical approaches to improve our understanding of psychopathology.

Type: Article
Title: The importance of transdiagnostic symptom level assessment to understanding prognosis for depressed adults: analysis of data from six randomised control trials
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1186/s12916-021-01971-0
Publisher version: http://dx.doi.org/10.1186/s12916-021-01971-0
Language: English
Additional information: Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Keywords: Anxiety, Comorbidity, Depression, Item level analysis, Network modelling
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences > Clinical, Edu and Hlth Psychology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Division of Psychiatry
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Statistical Science
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10127540
Downloads since deposit
2,280Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item