Kommers, I;
Bouget, D;
Pedersen, A;
Eijgelaar, RS;
Ardon, H;
Barkhof, F;
Bello, L;
... De Witt Hamer, PC; + view all
(2021)
Glioblastoma surgery imaging—reporting and data system: Standardized reporting of tumor volume, location, and resectability based on automated segmentations.
Cancers
, 13
(12)
, Article 2854. 10.3390/cancers13122854.
Preview |
Text
Barkhof_Glioblastoma Surgery Imaging—Reporting and Data System_VoR.pdf - Published Version Download (7MB) | Preview |
Abstract
Treatment decisions for patients with presumed glioblastoma are based on tumor characteristics available from a preoperative MR scan. Tumor characteristics, including volume, location, and resectability, are often estimated or manually delineated. This process is time consuming and subjective. Hence, comparison across cohorts, trials, or registries are subject to assessment bias. In this study, we propose a standardized Glioblastoma Surgery Imaging Reporting and Data System (GSI-RADS) based on an automated method of tumor segmentation that provides standard reports on tumor features that are potentially relevant for glioblastoma surgery. As clinical validation, we determine the agreement in extracted tumor features between the automated method and the current standard of manual segmentations from routine clinical MR scans before treatment. In an observational consecutive cohort of 1596 adult patients with a first time surgery of a glioblastoma from 13 institutions, we segmented gadolinium-enhanced tumor parts both by a human rater and by an automated algorithm. Tumor features were extracted from segmentations of both methods and compared to assess differences, concordance, and equivalence. The laterality, contralateral infiltration, and the laterality indices were in excellent agreement. The native and normalized tumor volumes had excellent agreement, consistency, and equivalence. Multifocality, but not the number of foci, had good agreement and equivalence. The location profiles of cortical and subcortical structures were in excellent agreement. The expected residual tumor volumes and resectability indices had excellent agreement, consistency, and equivalence. Tumor probability maps were in good agreement. In conclusion, automated segmentations are in excellent agreement with manual segmentations and practically equivalent regarding tumor features that are potentially relevant for neurosurgical purposes. Standard GSI-RADS reports can be generated by open access software.
Type: | Article |
---|---|
Title: | Glioblastoma surgery imaging—reporting and data system: Standardized reporting of tumor volume, location, and resectability based on automated segmentations |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3390/cancers13122854 |
Publisher version: | https://doi.org/10.3390/cancers13122854 |
Language: | English |
Additional information: | © 2021 by the Authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms andconditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Brain Repair and Rehabilitation |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10129974 |
Archive Staff Only
View Item |