UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Artificial intelligence reporting guidelines: what the pediatric radiologist needs to know

Meshaka, R; Dos Santos, DP; Arthurs, OJ; Sebire, NJ; Shelmerdine, SC; (2021) Artificial intelligence reporting guidelines: what the pediatric radiologist needs to know. Pediatric Radiology 10.1007/s00247-021-05129-1. (In press). Green open access

[thumbnail of PRAD AI Reporting for Ped Radiologist.pdf]
Preview
Text
PRAD AI Reporting for Ped Radiologist.pdf - Accepted Version

Download (2MB) | Preview

Abstract

There has been an exponential rise in artificial intelligence (AI) research in imaging in recent years. While the dissemination of study data that has the potential to improve clinical practice is welcomed, the level of detail included in early AI research reporting has been highly variable and inconsistent, particularly when compared to more traditional clinical research. However, inclusion checklists are now commonly available and accessible to those writing or reviewing clinical research papers. AI-specific reporting guidelines also exist and include distinct requirements, but these can be daunting for radiologists new to the field. Given that pediatric radiology is a specialty faced with workforce shortages and an ever-increasing workload, AI could help by offering solutions to time-consuming tasks, thereby improving workflow efficiency and democratizing access to specialist opinion. As a result, pediatric radiologists are expected to be increasingly leading and contributing to AI imaging research, and researchers and clinicians alike should feel confident that the findings reported are presented in a transparent way, with sufficient detail to understand how they apply to wider clinical practice. In this review, we describe two of the most clinically relevant and available reporting guidelines to help increase awareness and engage the pediatric radiologist in conducting AI imaging research. This guide should also be useful for those reading and reviewing AI imaging research and as a checklist with examples of what to expect.

Type: Article
Title: Artificial intelligence reporting guidelines: what the pediatric radiologist needs to know
Open access status: An open access version is available from UCL Discovery
DOI: 10.1007/s00247-021-05129-1
Publisher version: https://doi.org/10.1007/s00247-021-05129-1
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Artificial intelligence, Children, Diagnostic accuracy, Machine learning, Pediatric radiology, Reporting guidelines
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Developmental Neurosciences Dept
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Population, Policy and Practice Dept
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10131362
Downloads since deposit
16,948Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item