Magnarini, G;
Mitchell, T;
Goren, L;
Grindrod, P;
Browning, J;
(2021)
Implications of longitudinal ridges for the mechanics of ice-free long runout landslides.
Earth and Planetary Science Letters
, 574
, Article 117177. 10.1016/j.epsl.2021.117177.
Preview |
Text (Article)
Magnarini_El Magnifico manuscript_THIRD_REVISION_FINAL.pdf - Accepted Version Download (2MB) | Preview |
Preview |
Text (Supplementary material)
Magnarini_El Magnifico_Supplementary_material_SECOND_REVISION_FINAL.pdf - Accepted Version Download (1MB) | Preview |
Abstract
The emplacement mechanisms of long runout landslides across the Solar System and the formation mechanisms of longitudinal ridges associated with their deposits remain subjects of debate. The similarity of longitudinal ridges in martian long runout landslides and terrestrial landslides emplaced on ice suggests that an icy surface could explain both the reduction of friction associated with the deposition of long runout landslides and the development of longitudinal ridges. However, laboratory experiments on rapid granular flows show that ice is not a necessary requirement for the development of longitudinal ridges, which instead may form from convective cells within high-speed flows. These experiments have shown that the wavelength (S) of the ridges is 2-3 times the thickness (T) of the flow, which has also been demonstrated at field scale on a tens-of-kilometre martian long runout landslide. Here, we present the case study of the 4-km-long, ice-free El Magnifico landslide in Northern Chile which exhibits clear longitudinal ridges, and show for the first time on a terrestrial landslide that the S/T ratio is in agreement with the scaling relationship found for both laboratory rapid granular flows and a previously measured martian long runout landslide. Several outcrops within the landslide allow us to study internal sections of the landslide deposit and their relationship with the longitudinal ridges in order to shed light on the emplacement mechanism. Our observations include interactions without chaotic mixing between different lithologies and the presence of meters-sized blocks that exhibit preserved original bedding discontinuities. We associate these observations with fluctuations in stress, as they are qualitatively similar to numerically modelled rapid granular slides, which were suggested, to some degree, to be associated with acoustic fluidization. Our results suggest that 1) the mechanism responsible for the formation of longitudinal ridges is scale- and environment-independent; 2) while the internal structures observed do not necessarily support a mechanism of convective-style motion, their interpretation could also point to a mechanism of internal deformation of the sliding mass derived from pattern-forming vibrations. Our novel observations and analysis provide important insights for the interpretation of similar features on Earth and Mars and for discerning the underlying mechanisms responsible for the emplacement of long run out landslides.
Type: | Article |
---|---|
Title: | Implications of longitudinal ridges for the mechanics of ice-free long runout landslides |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1016/j.epsl.2021.117177 |
Publisher version: | https://doi.org/10.1016/j.epsl.2021.117177 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher's terms and conditions. |
Keywords: | longitudinal ridges, long runout landslide, deposit thickness, scaling relationship, emplacement mechanism |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Earth Sciences |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10133593 |
Archive Staff Only
View Item |