Vakharia, VN;
Rodionov, R;
Miserocchi, A;
McEvoy, AW;
O'Keeffe, A;
Granados, A;
Shapoori, S;
... Duncan, JS; + view all
(2021)
Comparison of robotic and manual implantation of intracerebral electrodes: a single-centre, single-blinded, randomised controlled trial.
Scientific Reports
, 11
, Article 17127. 10.1038/s41598-021-96662-4.
Preview |
Text
Duncan_s41598-021-96662-4.pdf - Published Version Download (1MB) | Preview |
Abstract
There has been a significant rise in robotic trajectory guidance devices that have been utilised for stereotactic neurosurgical procedures. These devices have significant costs and associated learning curves. Previous studies reporting devices usage have not undertaken prospective parallel-group comparisons before their introduction, so the comparative differences are unknown. We study the difference in stereoelectroencephalography electrode implantation time between a robotic trajectory guidance device (iSYS1) and manual frameless implantation (PAD) in patients with drug-refractory focal epilepsy through a single-blinded randomised control parallel-group investigation of SEEG electrode implantation, concordant with CONSORT statement. Thirty-two patients (18 male) completed the trial. The iSYS1 returned significantly shorter median operative time for intracranial bolt insertion, 6.36 min (95% CI 5.72–7.07) versus 9.06 min (95% CI 8.16–10.06), p = 0.0001. The PAD group had a better median target point accuracy 1.58 mm (95% CI 1.38–1.82) versus 1.16 mm (95% CI 1.01–1.33), p = 0.004. The mean electrode implantation angle error was 2.13° for the iSYS1 group and 1.71° for the PAD groups (p = 0.023). There was no statistically significant difference for any other outcome. Health policy and hospital commissioners should consider these differences in the context of the opportunity cost of introducing robotic devices.
Type: | Article |
---|---|
Title: | Comparison of robotic and manual implantation of intracerebral electrodes: a single-centre, single-blinded, randomised controlled trial |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/s41598-021-96662-4 |
Publisher version: | https://doi.org/10.1038/s41598-021-96662-4 |
Language: | English |
Additional information: | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Biomedical engineering, Epilepsy, Neurosurgery, Outcomes research |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Experimental Epilepsy UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Statistical Science |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10134494 |
Archive Staff Only
View Item |