Zwijnenburg, MA;
(2021)
The effect of particle size on the optical and electronic properties of magnesium oxide nanoparticles.
Physical Chemistry Chemical Physics
, 23
(38)
pp. 21579-21590.
10.1039/d1cp02683f.
Preview |
Text
Zwijnenburg_d1cp02683f.pdf - Published Version Download (2MB) | Preview |
Abstract
The quasiparticle states, fundamental gaps, optical gaps, exciton binding energies and UV-vis spectra for a series of cuboidal nanoparticles of the prototypical oxide magnesium oxide (MgO), the largest of which has 216 atoms and edges of 1 nm, were predicted using many-body perturbation theory (evGW-BSE). The evolution of the properties with the particle size was explicitly studied. It was found that, while the highest occupied and lowest unoccupied quasiparticle states and fundamental gap change with the particle size, the optical gap remains essentially fixed for all but the smallest nanoparticles, in line with what was previously observed experimentally. The explanation for these observations is demonstrated to be that, while the optical gap is associated with an exciton that is highly localised around the particle's corner atoms, the highest occupied and lowest unoccupied quasiparticle states, while primarily localised on the oxygen corner atoms (hole) and magnesium corner atoms (electron), show significant delocalisation along the edges. The strong localisation of the exciton associated with the optical gap on the corner atoms is argued to also explain why the nanoparticles have much smaller optical gaps and red-shifted spectra compared to bulk MgO. Finally, it is discussed how this non-quantum confinement behaviour, where the properties of the nanoparticles arise from surface defects rather than differences in localisation of quasiparticle or exciton states, appears typical of alkaline earth oxide nanoparticles, and that the true optical gap of bulk crystals of such materials is also probably the result of surface defects, even if unobservable experimentally.
Type: | Article |
---|---|
Title: | The effect of particle size on the optical and electronic properties of magnesium oxide nanoparticles |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1039/d1cp02683f |
Publisher version: | https://doi.org/10.1039/D1CP02683F |
Language: | English |
Additional information: | This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Chemistry |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10135983 |
Archive Staff Only
![]() |
View Item |