Butler, EL;
Reid, B;
Luckham, PF;
Guldin, S;
Livingston, AG;
Petit, C;
(2021)
Interparticle Forces of a Native and Encapsulated Metal-Organic Framework and Their Effects on Colloidal Dispersion.
ACS Applied Materials and Interfaces
, 13
(38)
pp. 45898-45906.
10.1021/acsami.1c13991.
Preview |
Text
Interparticle_Forces_of_a_Native_and_Encapsulated_Metal_Organic_Framework_and_Their_Effects_on_Colloidal_Dispersion.pdf - Accepted Version Download (1MB) | Preview |
Abstract
The colloidal properties of suspended metal-organic frameworks (MOFs) are critical for device fabrication and application. Herein, van der Waals attractive, electric double layer repulsive, and steric repulsive forces of a native and encapsulated MOF are quantified for the first time. The van der Waals attractive forces were investigated by conducting environmental ellipsometric porosimetry (EEP) and spectroscopic ellipsometry (SE) on submicron, optical-quality nanoparticle films. The repulsive forces were determined from colloid and material characterization measurements. These data were used to predict suspension properties via extended Derjaguin, Landau, Verwey, and Overbeek theory. The state of dispersion was quantified for comparison with theoretical predictions for nine solvents. The MOF encapsulated with a surface-selective modification showed superior suspension in hydrophobic solvents. These findings should expedite the formulation of MOF colloidal suspensions for future works.
Type: | Article |
---|---|
Title: | Interparticle Forces of a Native and Encapsulated Metal-Organic Framework and Their Effects on Colloidal Dispersion |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1021/acsami.1c13991 |
Publisher version: | https://doi.org/10.1021/acsami.1c13991 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Chemical Engineering |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10136468 |
Archive Staff Only
![]() |
View Item |