Ehara, Ayao;
(2021)
Multi-Fidelity Gaussian Process Emulation And Its Application In The Study Of Tsunami Risk Modelling.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
resubmit_AYAO_THESIS.pdf - Accepted Version Download (48MB) | Preview |
Abstract
Investigating uncertainties in computer simulations can be prohibitive in terms of computational costs, since the simulator needs to be run over a large number of input values. Building a statistical surrogate model of the simulator, using a small design of experiments, greatly alleviates the computational burden to carry out such investigations. Nevertheless, this can still be above the computational budget for many studies. We present a novel method that combines both approaches, the multilevel adaptive sequential design of computer experiments (MLASCE) in the framework of Gaussian process (GP) emulators. MLASCE is based on the two major approaches: efficient design of experiments, such as sequential designs, and combining training data of different degrees of sophistication in a so-called multi-fidelity method, or multilevel in case these fidelities are ordered typically for increasing resolutions. This dual strategy allows us to allocate efficiently limited computational resources over simulations of different levels of fidelity and build the GP emulator. The allocation of computational resources is shown to be the solution of a simple optimization problem in a special case where we theoretically prove the validity of our approach. MLASCE is compared with other existing models of multi-fidelity Gaussian process emulation. Gains of orders of magnitudes in accuracy for medium-size computing budgets are demonstrated in numerical examples. MLASCE should be useful in a computer experiment of a natural disaster risk and more than a mere tool for calculating the scale of natural disasters. To show MLASCE meets this expectation, we propose the first end-to-end example of a risk model for household asset loss due to a possible future tsunami. As a follow-up to this proposed framework, MLASCE provides a reliable statistical surrogate to a realistic tsunami risk assessment under a restricted computational resource and provides accurate and instant predictions of future tsunami risks.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | Multi-Fidelity Gaussian Process Emulation And Its Application In The Study Of Tsunami Risk Modelling |
Event: | UCL (University College London) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Statistical Science |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10138463 |
Archive Staff Only
View Item |