UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Inference for ranks with applications to mobility across neighborhoods and academic achievement across countries

Shaikh, AM; Wilhelm, D; Romano, JP; Mogstad, M; (2021) Inference for ranks with applications to mobility across neighborhoods and academic achievement across countries. (cemmap Working Paper 17/21). Institute for Fiscal Studies (IFS): London, UK. Green open access

[thumbnail of CWP1721-Inference-for-ranks-with-applications-to-mobility-across-neighborhoods-and-academic-achievement-across-countries.pdf]
Preview
Text
CWP1721-Inference-for-ranks-with-applications-to-mobility-across-neighborhoods-and-academic-achievement-across-countries.pdf

Download (8MB) | Preview

Abstract

It is often desired to rank different populations according to the value of some feature of each population. For example, it may be desired to rank neighborhoods according to some measure of intergenerational mobility or countries according to some measure of academic achievement. These rankings are invariably computed using estimates rather than the true values of these features. As a result, there may be considerable uncertainty concerning the rank of each population. In this paper, we consider the problem of accounting for such uncertainty by constructing confidence sets for the rank of each population. We consider both the problem of constructing marginal confidence sets for the rank of a particular population as well as simultaneous confidence sets for the ranks of all populations. We show how to construct such confidence sets under weak assumptions. An important feature of all of our constructions is that they remain computationally feasible even when the number of populations is very large. We apply our theoretical results to re-examine the rankings of both neighborhoods in the United States in terms of intergenerational mobility and developed countries in terms of academic achievement. The conclusions about which countries do best and worst at reading, math, and science are fairly robust to accounting for uncertainty. The confidence sets for the ranking of the 50 most populous commuting zones by mobility are also found to be small. However, the mobility rankings become much less informative if one includes all commuting zones, if one considers neighborhoods at a more granular level (counties, Census tracts), or if one uses movers across areas to address concerns about selection.

Type: Working / discussion paper
Title: Inference for ranks with applications to mobility across neighborhoods and academic achievement across countries
Open access status: An open access version is available from UCL Discovery
DOI: 10.47004/wp.cem.2021.1721
Publisher version: http://doi.org/10.47004/wp.cem.2021.1721
Language: English
Additional information: This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Confidence sets, Directional errors, Familywise error rate, Intergenerational mobility, Multiple testing, PISA, Ranks
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL SLASH
UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS
UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS > Dept of Economics
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10140299
Downloads since deposit
4,104Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item