UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Super-resolution mapping of receptor engagement during HIV entry

Yuan, Yue; (2022) Super-resolution mapping of receptor engagement during HIV entry. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Thesis-Yue Yuan-16071317.pdf]
Preview
Text
Thesis-Yue Yuan-16071317.pdf - Accepted Version

Download (30MB) | Preview

Abstract

The plasma membrane (PM) serves as a major interface between the cell and extracellular stimuli. Studies indicate that the spatial organisation and dynamics of receptors correlate with the regulation of cellular responses. However, the nanoscale spatial organisation of specific receptor molecules on the surface of cells is not well understood primarily because these spatial events are beyond the resolving power of available tools. With the development in super-resolution microscopy and quantitative analysis approaches, it optimally poises me to address some of these questions. The human immunodeficiency virus type-1 (HIV-1) entry process is an ideal model for studying the functional correlation of the spatial organisation of receptors. The molecular interactions between HIV envelope glycoprotein (Env) and key receptors, CD4 and co-receptor CCR5/CXCR4, on the PM of target cells have been well characterised. However, the spatial organisation that receptors undergo upon HIV-1 binding remains unclear. In this project, I established a Single Molecule Localisation Microscopy (SMLM) based visualisation and quantitative analysis pipeline to characterise CD4 membrane organisation in CD4+ T cells, the main host cell target for HIV-1 infection. I found that prior to HIV engagement, CD4 and CCR5 molecules are organised in small distinct clusters across the PM. Upon HIV-1 engagement, I observed dynamic congregation and subsequent dispersal of virus-associated CD4 clusters within 10min. I further incorporated statistical modelling to show that this reorganisation is not random. This thesis provides one of the first nanoscale imaging and quantitative pipelines for visualising and quantifying membrane receptors. I showed that this quantitative approach provides a robust methodology for understanding the recruitment of HIV-1 receptors before the formation of a fusion pore. This methodology can be applied to the analyses of the nanoscale organisation of PM receptors to link the spatial organisation to function.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Super-resolution mapping of receptor engagement during HIV entry
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2022. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10145048
Downloads since deposit
3,465Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item