UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Slowly expanding lesions relate to persisting black-holes and clinical outcomes in relapse-onset multiple sclerosis

Calvi, Alberto; Tur, Carmen; Chard, Declan; Stutters, Jonathan; Ciccarelli, Olga; Cortese, Rosa; Battaglini, Marco; ... Barkhof, Frederik; + view all (2022) Slowly expanding lesions relate to persisting black-holes and clinical outcomes in relapse-onset multiple sclerosis. NeuroImage: Clinical , 35 , Article 103048. 10.1016/j.nicl.2022.103048. Green open access

[thumbnail of Calvi_Slowly expanding lesions relate to persisting black-holes and clinical outcomes in relapse-onset multiple sclerosis_VoR.pdf]
Preview
Text
Calvi_Slowly expanding lesions relate to persisting black-holes and clinical outcomes in relapse-onset multiple sclerosis_VoR.pdf

Download (1MB) | Preview

Abstract

BACKGROUND: Slowly expanding lesions (SELs) are MRI markers of chronic active lesions in multiple sclerosis (MS). T1-hypointense black holes, and reductions in magnetization transfer ratio (MTR) are pathologically correlated with myelin and axonal loss. While all associated with progressive MS, the relationship between these lesion's metrics and clinical outcomes in relapse-onset MS has not been widely investigated. OBJECTIVES: To explore the relationship of SELs with T1-hypointense black holes, and longitudinal T1 intensity contrast ratio and MTR, their correlation to brain volume, and their contribution to MS disability in relapse-onset patients. METHODS: 135 patients with relapsing-remitting MS (RRMS) were studied with clinical assessments and brain MRI (T2/FLAIR and T1-weighted scans at 1.5/3 T) at baseline and two subsequent follow-ups; a subset of 83 patients also had MTR acquisitions. Early-onset patients were defined when the baseline disease duration was ≤ 5 years (n = 85). SELs were identified using deformation field maps from the manually segmented baseline T2 lesions and differentiated from the non-SELs. Persisting black holes (PBHs) were defined as a subset of T2 lesions with a signal below a patient-specific grey matter T1 intensity in a semi-quantitative manner. SELs, PBH counts, and brain volume were computed, and their associations were assessed through Spearman and Pearson correlation. Clusters of patients according to low (up to 2), intermediate (3 to 10), or high (more than 10) SEL counts were determined with a Gaussian generalised mixture model. Mixed-effects and logistic regression models assessed volumes, T1 and MTR within SELs, and their correlation with Expanded Disability Status Scale (EDSS) and confirmed disability progression (CDP). RESULTS: Mean age at study onset was 35.5 years (73% female), disease duration 5.5 years and mean time to last follow-up 6.5 years (range 1 to 12.5); median baseline EDSS 1.5 (range 0 to 5.5) and a mean EDSS change of 0.31 units at final follow-up. Among 4007 T2 lesions, 27% were classified as SELs and 10% as PBHs. Most patients (n = 65) belonged to the cluster with an intermediate SEL count (3 to 10 SELs). The percentage of PBHs was higher in SELs than non-SELs (up to 61% vs 44%, p < 0.001) and within-patient SEL volumes positively correlated with PBH volumes (r = 0.53, p < 0.001). SELs showed a decrease in T1 intensity over time (beta = -0.004, 95%CI -0.005 to -0.003, p < 0.001), accompanied by lower cross-sectional baseline and follow-up MTR. In mixed-effects models, EDSS worsening was predicted by the SEL log-volumes increase over time (beta = 0.11, 95%CI 0.03 to 0.20, p = 0.01), which was confirmed in the sub-cohort of patients with early onset MS (beta = 0.14, 95%CI 0.04 to 0.25, p = 0.008). In logistic regressions, a higher risk for CDP was associated with SEL volumes (OR = 5.15, 95%CI 1.60 to 16.60, p = 0.006). CONCLUSIONS: SELs are associated with accumulation of more destructive pathology as indicated by an association with PBH volume, longitudinal reduction in T1 intensity and MTR. Higher SEL volumes are associated with clinical progression, while lower ones are associated with stability in relapse-onset MS.

Type: Article
Title: Slowly expanding lesions relate to persisting black-holes and clinical outcomes in relapse-onset multiple sclerosis
Location: Netherlands
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.nicl.2022.103048
Publisher version: https://doi.org/10.1016/j.nicl.2022.103048
Language: English
Additional information: © 2022 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: Black holes, Chronic active lesions, Multiple sclerosis, SEL, Volumetric MRI
UCL classification: UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neuroinflammation
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Brain Repair and Rehabilitation
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10149438
Downloads since deposit
5,928Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item