UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Reproducibility of 3 T APT-CEST in Healthy Volunteers and Patients With Brain Glioma

Wamelink, Ivar JHG; Kuijer, Joost PA; Padrela, Beatriz E; Zhang, Yi; Barkhof, Frederik; Mutsaerts, Henk JMM; Petr, Jan; ... Keil, Vera C; + view all (2022) Reproducibility of 3 T APT-CEST in Healthy Volunteers and Patients With Brain Glioma. Journal of Magnetic Resonance Imaging 10.1002/jmri.28239. (In press). Green open access

[thumbnail of Barkhof_Reproducibility of 3 T APT-CEST in Healthy Volunteers and Patients With.pdf]
Preview
Text
Barkhof_Reproducibility of 3 T APT-CEST in Healthy Volunteers and Patients With.pdf - Published Version

Download (2MB) | Preview

Abstract

BACKGROUND: Amide proton transfer (APT) imaging is a chemical exchange saturation transfer (CEST) technique offering potential clinical applications such as diagnosis, characterization, and treatment planning and monitoring in glioma patients. While APT-CEST has demonstrated high potential, reproducibility remains underexplored. PURPOSE: To investigate whether cerebral APT-CEST with clinically feasible scan time is reproducible in healthy tissue and glioma for clinical use at 3 T. STUDY TYPE: Prospective, longitudinal. SUBJECTS: Twenty-one healthy volunteers (11 females; mean age ± SD: 39 ± 11 years) and 6 glioma patients (3 females; 50 ± 17 years: 4 glioblastomas, 1 oligodendroglioma, 1 radiologically suspected low-grade glioma). FIELD STRENGTH/SEQUENCE: 3 T, Turbo Spin Echo - ampling perfection with application optimized contrasts using different flip angle evolution - chemical exchange saturation transfer (TSE SPACE-CEST). ASSESSMENT: APT-CEST measurement reproducibility was assessed within-session (glioma patients, scan session 1; healthy volunteers scan sessions 1, 2, and 3), between-sessions (healthy volunteers scan sessions 1 and 2), and between-days (healthy volunteers, scan sessions 1 and 3). The mean APTCEST values and standard deviation of the within-subject difference (SDdiff ) were calculated in whole tumor enclosed by regions of interest (ROIs) in patients, and eight ROIs in healthy volunteers-whole-brain, cortical gray matter, putamen, thalami, orbitofrontal gyri, occipital lobes, central brain-and compared. STATISTICAL TESTS: Brown-Forsythe tests and variance component analysis (VCA) were used to assess the reproducibility of ROIs for the three time intervals. Significance was set at P < 0.003 after Bonferroni correction. RESULTS: Intratumoral mean APTCEST was significantly higher than APTCEST in healthy-appearing tissue in patients (0.5 ± 0.46%). The average within-session, between-sessions, and between-days SDdiff of healthy control brains was 0.2% and did not differ significantly with each other (0.76 > P > 0.22). The within-session SDdiff of whole-brain was 0.2% in both healthy volunteers and patients, and 0.21% in the segmented tumor. VCA showed that within-session factors were the most important (60%) for scanning variance. DATA CONCLUSION: Cerebral APT-CEST imaging may show good scan-rescan reproducibility in healthy tissue and tumors with clinically feasible scan times at 3 T. Short-term measurement effects may be the dominant components for reproducibility. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

Type: Article
Title: Reproducibility of 3 T APT-CEST in Healthy Volunteers and Patients With Brain Glioma
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1002/jmri.28239
Publisher version: https://doi.org/10.1002/jmri.28239
Language: English
Additional information: © 2022 The Authors. Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: reproducibility, glioma, APT, CEST, brain
UCL classification: UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Brain Repair and Rehabilitation
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10149847
Downloads since deposit
17,936Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item