UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Ab initio simulations of α- and β-ammonium carbamate (NH₄·NH₂CO₂), and the thermal expansivity of deuterated α-ammonium carbamate from 4.2 to 180 K by neutron powder diffraction

Howard, CM; Wood, IG; Knight, KS; Fortes, AD; (2022) Ab initio simulations of α- and β-ammonium carbamate (NH₄·NH₂CO₂), and the thermal expansivity of deuterated α-ammonium carbamate from 4.2 to 180 K by neutron powder diffraction. Acta Crystallographica. Section B: Structural Science, Crystal Engineering and Materials , 78 (3) pp. 459-475. 10.1107/S2052520622002645. Green open access

[thumbnail of xk5092.pdf]
Preview
Text
xk5092.pdf - Published Version

Download (3MB) | Preview

Abstract

Experimental and computational studies of ammonium carbamate have been carried out, with the objective of studying the elastic anisotropy of the framework manifested in (i) the thermal expansion and (ii) the compressibility; furthermore, the relative thermodynamic stability of the two known polymorphs has been evaluated computationally. Using high-resolution neutron powder diffraction data, the crystal structure of α-ammonium carbamate (ND4·ND2CO2) has been refined [space group Pbca, Z = 8, with a = 17.05189 (15), b = 6.43531 (7), c = 6.68093 (7) Å and V = 733.126 (9) Å^{3} at 4.2 K] and the thermal expansivity of α-ammonium carbamate has been measured over the temperature range 4.2-180 K. The expansivity shows a high degree of anisotropy, with the b axis most expandable. The ab initio computational studies were carried out on the α- and β-polymorphs of ammonium carbamate using density functional theory. Fitting equations of state to the P(V) points of the simulations (run athermally) gave the following values: V0 = 744 (2) Å^{3} and bulk modulus K0 = 16.5 (4) GPa for the α-polymorph, and V0 = 713.6 (5) Å^{3} and K0 = 24.4 (4) GPa for the β-polymorph. The simulations show good agreement with the thermoelastic behaviour of α-ammonium carbamate. Both phases show a high-degree of anisotropy; in particular, α-ammonium carbamate shows unusual compressive behaviour, being determined to have negative linear compressibility (NLC) along its a axis above 5 GPa. The thermodynamically stable phase at ambient pressure is the α-polymorph, with a calculated enthalpy difference with respect to the β-polymorph of 0.399 kJ mol^{-1}; a transition to the β-polymorph could occur at ∼0.4 GPa.

Type: Article
Title: Ab initio simulations of α- and β-ammonium carbamate (NH₄·NH₂CO₂), and the thermal expansivity of deuterated α-ammonium carbamate from 4.2 to 180 K by neutron powder diffraction
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1107/S2052520622002645
Publisher version: https://doi.org/10.1107/S2052520622002645
Language: English
Additional information: © 2022 International Union of Crystallography. Published under a CC BY 4.0 licence (https://creativecommons.org/licences/by/4.0/legalcode).
Keywords: DFT, ammonium carbamate, negative linear compressibility, neutron diffraction, powder diffraction, thermal expansion, Carbamates, Carbon Dioxide, Neutrons, Powder Diffraction, Powders
UCL classification: UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Earth Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10151703
Downloads since deposit
2,132Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item