UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1-Dependent Inositol Polyphosphates Regulate Auxin Responses in Arabidopsis

Laha, Nargis Parvin; Giehl, Ricardo FH; Riemer, Esther; Qiu, Danye; Pullagurla, Naga Jyothi; Schneider, Robin; Dhir, Yashika Walia; ... Schaaf, Gabriel; + view all (2022) INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1-Dependent Inositol Polyphosphates Regulate Auxin Responses in Arabidopsis. Plant Physiology , Article kiac425. 10.1093/plphys/kiac425. (In press). Green open access

[thumbnail of kiac425.pdf]
Preview
Text
kiac425.pdf - Published Version

Download (2MB) | Preview

Abstract

The combinatorial phosphorylation of myo-inositol results in the generation of different inositol phosphates (InsPs), of which phytic acid (InsP6) is the most abundant species in eukaryotes. InsP6 is also an important precursor of the higher phosphorylated inositol pyrophosphates (PP-InsPs), such as InsP7 and InsP8, which are characterized by a diphosphate moiety and are also ubiquitously found in eukaryotic cells. While PP-InsPs regulate various cellular processes in animals and yeast, their biosynthesis and functions in plants has remained largely elusive because plant genomes do not encode canonical InsP6 kinases. Recent work has shown that Arabidopsis (Arabidopsis thaliana) INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1 (ITPK1) and ITPK2 display in vitro InsP6 kinase activity and that, in planta, ITPK1 stimulates 5-InsP7 and InsP8 synthesis and regulates phosphate starvation responses. Here we report a critical role of ITPK1 in auxin-related processes that is independent of the ITPK1-controlled regulation of phosphate starvation responses. Those processes include primary root elongation, root hair development, leaf venation, thermomorphogenic and gravitropic responses, and sensitivity to exogenously applied auxin. We found that the recombinant auxin receptor complex, consisting of the F-Box protein TRANSPORT INHIBITOR RESPONSE1 (TIR1), ARABIDOPSIS SKP1 HOMOLOGUE 1 (ASK1) and the transcriptional repressor INDOLE-3-ACETIC ACID INDUCIBLE 7 (IAA7), binds to anionic inositol polyphosphates with high affinity. We further identified a physical interaction between ITPK1 and TIR1, suggesting a localized production of 5-InsP7, or another ITPK1-dependent InsP/PP-InsP isomer, to activate the auxin receptor complex. Finally, we demonstrate that ITPK1 and ITPK2 function redundantly to control auxin responses, as deduced from the auxin-insensitive phenotypes of itpk1 itpk2 double mutant plants. Our findings expand the mechanistic understanding of auxin perception and suggest that distinct inositol polyphosphates generated near auxin receptors help to fine-tune auxin sensitivity in plants.

Type: Article
Title: INOSITOL (1,3,4) TRIPHOSPHATE 5/6 KINASE1-Dependent Inositol Polyphosphates Regulate Auxin Responses in Arabidopsis
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1093/plphys/kiac425
Publisher version: https://doi.org/10.1093/plphys/kiac425
Language: English
Additional information: © The Author(s) 2022. Published by Oxford University Press on behalf of American Society of Plant Biologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
UCL classification: UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Lab for Molecular Cell Bio MRC-UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10156262
Downloads since deposit
3,619Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item