UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Efficient Lignin Fractionation from Scots Pine (Pinus sylvestris) Using Ammonium-Based Protic Ionic Liquid: Process Optimization and Characterization of Recovered Lignin

Khan, Sharib; Rauber, Daniel; Shanmugam, Sabarathinam; Kay, Christopher WM; Konist, Alar; Kikas, Timo; (2022) Efficient Lignin Fractionation from Scots Pine (Pinus sylvestris) Using Ammonium-Based Protic Ionic Liquid: Process Optimization and Characterization of Recovered Lignin. Polymers , 14 (21) , Article 4637. 10.3390/polym14214637. Green open access

[thumbnail of polymers-14-04637-v2.pdf]
Preview
Text
polymers-14-04637-v2.pdf - Published Version

Download (3MB) | Preview

Abstract

Lignin-based chemicals and biomaterials will be feasible alternatives to their fossil-fuel-based counterparts once their breakdown into constituents is economically viable. The existing commercial market for lignin remains limited due to its complex heterogenous structure and lack of extraction/depolymerization techniques. Hence, in the present study, a novel low-cost ammonium-based protic ionic liquid (PIL), 2-hydroxyethyl ammonium lactate [N11H(2OH)][LAC], is used for the selective fractionation and improved extraction of lignin from Scots pine (Pinus sylvestris) softwood biomass (PWB). The optimization of three process parameters, viz., the incubation time, temperature, and biomass:PIL (BM:PIL) ratio, was performed to determine the best pretreatment conditions for lignin extraction. Under the optimal pretreatment conditions (180 °C, 3 h, and 1:3 BM:PIL ratio), [N11H(2OH)][LAC] yielded 61% delignification with a lignin recovery of 56%; the cellulose content of the recovered pulp was approximately 45%. Further, the biochemical composition of the recovered lignin and pulp was determined and the recovered lignin was characterized using 1H–13C heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy, quantitative 31P NMR, gel permeation chromatography (GPC), attenuated total reflectance (ATF)–Fourier transform infrared spectroscopy (ATR-FTIR), and thermal gravimetric analysis (TGA) analysis. Our results reveal that [N11H(2OH)][LAC] is significantly involved in the cleavage of predominant β–O–4’ linkages for the generation of aromatic monomers followed by the in situ depolymerization of PWB lignin. The simultaneous extraction and depolymerization of PWB lignin favors the utilization of recalcitrant pine biomass as feedstock for biorefinery schemes.

Type: Article
Title: Efficient Lignin Fractionation from Scots Pine (Pinus sylvestris) Using Ammonium-Based Protic Ionic Liquid: Process Optimization and Characterization of Recovered Lignin
Open access status: An open access version is available from UCL Discovery
DOI: 10.3390/polym14214637
Publisher version: https://doi.org/10.3390/polym14214637
Language: English
Additional information: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Keywords: Renewable biomass; lignin; protic ionic liquid (PIL); sustainable biomass processing; lignin extraction; depolymerization
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > London Centre for Nanotechnology
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10159828
Downloads since deposit
2,310Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item