Vouga Ribeiro, Nuno;
Tavares, Vânia;
Bramon, Elvira;
Toulopoulou, Timothea;
Valli, Isabel;
Shergill, Sukhi;
Murray, Robin;
(2022)
Effects of psychosis-associated genetic markers on brain volumetry: a systematic review of replicated findings and an independent validation.
Psychological Medicine
10.1017/S0033291722002896.
(In press).
Preview |
Text
Bramon_Effects of psychosis-associated genetic markers on brain volumetry_AOP.pdf - Published Version Download (765kB) | Preview |
Abstract
BACKGROUND: Given psychotic illnesses' high heritability and associations with brain structure, numerous neuroimaging-genetics findings have been reported in the last two decades. However, few findings have been replicated. In the present independent sample we aimed to replicate any psychosis-implicated SNPs (single nucleotide polymorphisms), which had previously shown at least two main effects on brain volume. METHODS: A systematic review for SNPs showing a replicated effect on brain volume yielded 25 studies implicating seven SNPs in five genes. Their effect was then tested in 113 subjects with either schizophrenia, bipolar disorder, 'at risk mental state' or healthy state, for whole-brain and region-of-interest (ROI) associations with grey and white matter volume changes, using voxel-based morphometry. RESULTS: We found FWER-corrected (Family-wise error rate) (i.e. statistically significant) associations of: (1) CACNA1C-rs769087-A with larger bilateral hippocampus and thalamus white matter, across the whole brain; and (2) CACNA1C-rs769087-A with larger superior frontal gyrus, as ROI. Higher replication concordance with existing literature was found, in decreasing order, for: (1) CACNA1C-rs769087-A, with larger dorsolateral-prefrontal/superior frontal gyrus and hippocampi (both with anatomical and directional concordance); (2) ZNF804A-rs11681373-A, with smaller angular gyrus grey matter and rectus gyri white matter (both with anatomical and directional concordance); and (3) BDNF-rs6265-T with superior frontal and middle cingulate gyri volume change (with anatomical and allelic concordance). CONCLUSIONS: Most literature findings were not herein replicated. Nevertheless, high degree/likelihood of replication was found for two genome-wide association studies- and one candidate-implicated SNPs, supporting their involvement in psychosis and brain structure.
Type: | Article |
---|---|
Title: | Effects of psychosis-associated genetic markers on brain volumetry: a systematic review of replicated findings and an independent validation |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1017/S0033291722002896 |
Publisher version: | https://doi.org/10.1017/S0033291722002896 |
Language: | English |
Additional information: | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third-party material in this article are included in the Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
Keywords: | Brain structure, GWAS, MRI, candidate genes, imaging genetics |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Division of Psychiatry UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Division of Psychiatry > Mental Health Neuroscience |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10161641 |
Archive Staff Only
View Item |