UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Euclid: Forecasts from the void-lensing cross-correlation

Bonici, M; Carbone, C; Davini, S; Vielzeuf, P; Paganin, L; Cardone, V; Hamaus, N; ... Andreon, S; + view all (2023) Euclid: Forecasts from the void-lensing cross-correlation. Astronomy & Astrophysics , 670 , Article A47. 10.1051/0004-6361/202244445. Green open access

[thumbnail of aa44445-22.pdf]
Preview
PDF
aa44445-22.pdf - Published Version

Download (3MB) | Preview

Abstract

The Euclid space telescope will survey a large dataset of cosmic voids traced by dense samples of galaxies. In this work we estimate its expected performance when exploiting angular photometric void clustering, galaxy weak lensing, and their cross-correlation. To this aim, we implemented a Fisher matrix approach tailored for voids from the Euclid photometric dataset and we present the first forecasts on cosmological parameters that include the void-lensing correlation. We examined two different probe settings, pessimistic and optimistic, both for void clustering and galaxy lensing. We carried out forecast analyses in four model cosmologies, accounting for a varying total neutrino mass, Mν, and a dynamical dark energy (DE) equation of state, w(z), described by the popular Chevallier-Polarski-Linder parametrization. We find that void clustering constraints on h and Ωb are competitive with galaxy lensing alone, while errors on ns decrease thanks to the orthogonality of the two probes in the 2D-projected parameter space. We also note that, as a whole, with respect to assuming the two probes as independent, the inclusion of the void-lensing cross-correlation signal improves parameter constraints by 10 − 15%, and enhances the joint void clustering and galaxy lensing figure of merit (FoM) by 10% and 25%, in the pessimistic and optimistic scenarios, respectively. Finally, when further combining with the spectroscopic galaxy clustering, assumed as an independent probe, we find that, in the most competitive case, the FoM increases by a factor of 4 with respect to the combination of weak lensing and spectroscopic galaxy clustering taken as independent probes. The forecasts presented in this work show that photometric void clustering and its cross-correlation with galaxy lensing deserve to be exploited in the data analysis of the Euclid galaxy survey and promise to improve its constraining power, especially on h, Ωb, the neutrino mass, and the DE evolution.

Type: Article
Title: Euclid: Forecasts from the void-lensing cross-correlation
Open access status: An open access version is available from UCL Discovery
DOI: 10.1051/0004-6361/202244445
Publisher version: https://doi.org/10.1051/0004-6361/202244445
Language: English
Additional information: Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.
Keywords: gravitational lensing: weak – cosmological parameters – large-scale structure of Universe
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10165158
Downloads since deposit
308Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item