Ohene, Yolanda;
Harris, William J;
Powell, Elizabeth;
Wycech, Nina W;
Smethers, Katherine F;
Lasič, Samo;
South, Kieron;
... Dickie, Ben R; + view all
(2023)
Filter exchange imaging with crusher gradient modelling detects increased blood–brain barrier water permeability in response to mild lung infection.
Fluids and Barriers of the CNS
, 20
(1)
, Article 25. 10.1186/s12987-023-00422-7.
Preview |
Text
s12987-023-00422-7.pdf - Published Version Download (5MB) | Preview |
Abstract
Blood–brain barrier (BBB) dysfunction occurs in many brain diseases, and there is increasing evidence to suggest that it is an early process in dementia which may be exacerbated by peripheral infection. Filter-exchange imaging (FEXI) is an MRI technique for measuring trans-membrane water exchange. FEXI data is typically analysed using the apparent exchange rate (AXR) model, yielding estimates of the AXR. Crusher gradients are commonly used to remove unwanted coherence pathways arising from longitudinal storage pulses during the mixing period. We first demonstrate that when using thin slices, as is needed for imaging the rodent brain, crusher gradients result in underestimation of the AXR. To address this, we propose an extended crusher-compensated exchange rate (CCXR) model to account for diffusion-weighting introduced by the crusher gradients, which is able to recover ground truth values of BBB water exchange (kin) in simulated data. When applied to the rat brain, kin estimates obtained using the CCXR model were 3.10 s−1 and 3.49 s−1 compared to AXR estimates of 1.24 s−1 and 0.49 s−1 for slice thicknesses of 4.0 mm and 2.5 mm respectively. We then validated our approach using a clinically relevant Streptococcus pneumoniae lung infection. We observed a significant 70 ± 10% increase in BBB water exchange in rats during active infection (kin = 3.78 ± 0.42 s−1) compared to before infection (kin = 2.72 ± 0.30 s−1; p = 0.02). The BBB water exchange rate during infection was associated with higher levels of plasma von Willebrand factor (VWF), a marker of acute vascular inflammation. We also observed 42% higher expression of perivascular aquaporin-4 (AQP4) in infected animals compared to non-infected controls, while levels of tight junction proteins remain consistent between groups. In summary, we propose a modelling approach for FEXI data which removes the bias in estimated water-exchange rates associated with the use of crusher gradients. Using this approach, we demonstrate the impact of peripheral infection on BBB water exchange, which appears to be mediated by endothelial dysfunction and associated with an increase in perivascular AQP4.
Type: | Article |
---|---|
Title: | Filter exchange imaging with crusher gradient modelling detects increased blood–brain barrier water permeability in response to mild lung infection |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1186/s12987-023-00422-7 |
Publisher version: | https://doi.org/10.1186/s12987-023-00422-7 |
Language: | English |
Additional information: | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
Keywords: | MRI FEXI, Blood–brain barrier, BBB water permeability, BBB water exchange, Infection, Aquaporin-4 |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10168374 |
Archive Staff Only
![]() |
View Item |