UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Calcitriol Protects against Acetaminophen-Induced Hepatotoxicity in Mice

Sriphoosanaphan, Supachaya; Rattanachaisit, Pakkapon; Somanawat, Kanjana; Wanpiyarat, Natcha; Komolmit, Piyawat; Werawatganon, Duangporn; (2023) Calcitriol Protects against Acetaminophen-Induced Hepatotoxicity in Mice. Biomedicines , 11 (6) , Article 1534. 10.3390/biomedicines11061534. Green open access

[thumbnail of Calcitriol Protects against Acetaminophen-Induced Hepatotoxicity in Mice.pdf]
Preview
Text
Calcitriol Protects against Acetaminophen-Induced Hepatotoxicity in Mice.pdf - Published Version

Download (1MB) | Preview

Abstract

Acetaminophen (APAP) overdose is one of the major causes of acute liver failure. Severe liver inflammation and the production of oxidative stress occur due to toxic APAP metabolites and glutathione depletion. Growing evidence has proved that vitamin D (VD) exerts anti-inflammatory and antioxidative functions. Our objective was to explore the protective role of calcitriol (VD3) in acute APAP-induced liver injury. Methods: Adult male mice were randomized into three groups; control (n = 8), APAP (n = 8), and VD3 group (n = 8). All mice, except controls, received oral administration of APAP (400 mg/kg) and were sacrificed 24 h later. In the VD3 group, calcitriol (10 µg/kg) was injected intraperitoneally 24 h before and after exposure to APAP. Blood samples were collected to assess serum aminotransferase and inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6)]. Liver tissues were analyzed for hepatic glutathione (GSH), malondialdehyde (MDA), and histopathology. Results: APAP administration significantly increased serum aminotransferase, inflammatory cytokines, and induced cellular inflammation and necrosis. APAP also depleted hepatic GSH and elevated oxidative stress, as indicated by high MDA levels. In the APAP group, 25% of the mice (two out of eight) died, while no deaths occurred in the VD3 group. Treatment with calcitriol significantly reduced serum aminotransferase, TNF-α, and IL-6 levels in the VD3 group compared to the APAP group. Additionally, VD3 effectively restored GSH reserves, reduced lipid peroxidation, and attenuated hepatotoxicity. Conclusions: These findings demonstrate that VD3 prevents APAP-induced acute liver injury and reduces mortality in mice through its anti-inflammatory and antioxidative activity. Thus, VD3 might be a novel treatment strategy for APAP-induced hepatotoxicity.

Type: Article
Title: Calcitriol Protects against Acetaminophen-Induced Hepatotoxicity in Mice
Open access status: An open access version is available from UCL Discovery
DOI: 10.3390/biomedicines11061534
Publisher version: https://doi.org/10.3390/biomedicines11061534
Language: English
Additional information: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Keywords: vitamin D; calcitriol; acetaminophen; APAP; hepatotoxicity; liver injury
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10171092
Downloads since deposit
160Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item