UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Long Time Scale Ensemble Methods in Molecular Dynamics: Ligand–Protein Interactions and Allostery in SARS-CoV-2 Targets

Bhati, Agastya P; Hoti, Art; Potterton, Andrew; Bieniek, Mateusz K; Coveney, Peter V; (2023) Long Time Scale Ensemble Methods in Molecular Dynamics: Ligand–Protein Interactions and Allostery in SARS-CoV-2 Targets. Journal of Chemical Theory and Computation 10.1021/acs.jctc.3c00020. (In press). Green open access

[thumbnail of acs.jctc.3c00020.pdf]
Preview
Text
acs.jctc.3c00020.pdf - Published Version

Download (8MB) | Preview

Abstract

We subject a series of five protein-ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10 μs simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, regardless of their temporal duration individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this time scale, we compare the statistical distribution of protein-ligand contact frequencies for these ten/twelve 10 μs trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long time scale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that, although this is the standard way such quantities are currently reported at long time scale, individual simulations do not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages. Our findings here are generally applicable to all molecular dynamics based applications and not confined to the free energy methods used in this study.

Type: Article
Title: Long Time Scale Ensemble Methods in Molecular Dynamics: Ligand–Protein Interactions and Allostery in SARS-CoV-2 Targets
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1021/acs.jctc.3c00020
Publisher version: https://doi.org/10.1021/acs.jctc.3c00020
Language: English
Additional information: This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Chemistry
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10171493
Downloads since deposit
410Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item