Burman, Erik;
(2023)
A primal dual mixed finite element method for inverse identification of the diffusion coefficient and its relation to the Kohn-Vogelius penalty method.
Selecciones Matemáticas
, 10
(01)
pp. 16-28.
10.17268/sel.mat.2023.01.02.
Preview |
Text
5279-Article Text-20021-1-10-20230613.pdf - Published Version Download (696kB) | Preview |
Abstract
We revisit the celebrated Kohn-Vogelius penalty method and discuss how to use it for the unique continuation problem where data is given in the bulk of the domain. We then show that the primal-dual mixed finite element methods for the elliptic Cauchy problem introduced in [1] (E. Burman, M. Larson, L. Oksanen, Primal-dual mixed finite element methods for the elliptic Cauchy problem, SIAM J. Num. Anal., 56(6), 2018) can be interpreted as a Kohn-Vogelius penalty method and modify it to allow for unique continuation using data in the bulk. We prove that the resulting linear system is invertible for all data. Then we show that by introducing a singularly perturbed Robin condition on the discrete level sufficient regularization is obtained so that error estimates can be shown using conditional stability. Finally we show how the method can be used for the identification of the diffusivity coefficient in a second order elliptic operator with partial data. Some numerical examples are presented showing the performance of the method for unique continuation and for impedance computed tomography with partial data.
Type: | Article |
---|---|
Title: | A primal dual mixed finite element method for inverse identification of the diffusion coefficient and its relation to the Kohn-Vogelius penalty method |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.17268/sel.mat.2023.01.02 |
Publisher version: | https://doi.org/10.17268/sel.mat.2023.01.02 |
Language: | English |
Additional information: | This work is licensed under a Creative Commons Attribution 4.0 International License. |
Keywords: | Unique continuation, Mixed finite element method, Stability. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Mathematics |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10172626 |
Archive Staff Only
![]() |
View Item |