UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Informative cluster size in cluster-randomised trials: A case study from the TRIGGER trial

Kahan, Brennan C; Li, Fan; Blette, Bryan; Jairath, Vipul; Copas, Andrew; Harhay, Michael; (2023) Informative cluster size in cluster-randomised trials: A case study from the TRIGGER trial. Clinical Trials 10.1177/17407745231186094. (In press). Green open access

[thumbnail of kahan-et-al-2023-informative-cluster-size-in-cluster-randomised-trials-a-case-study-from-the-trigger-trial.pdf]
Preview
PDF
kahan-et-al-2023-informative-cluster-size-in-cluster-randomised-trials-a-case-study-from-the-trigger-trial.pdf - Published Version

Download (302kB) | Preview

Abstract

Background Recent work has shown that cluster-randomised trials can estimate two distinct estimands: the participant-average and cluster-average treatment effects. These can differ when participant outcomes or the treatment effect depends on the cluster size (termed informative cluster size). In this case, estimators that target one estimand (such as the analysis of unweighted cluster-level summaries, which targets the cluster-average effect) may be biased for the other. Furthermore, commonly used estimators such as mixed-effects models or generalised estimating equations with an exchangeable correlation structure can be biased for both estimands. However, there has been little empirical research into whether informative cluster size is likely to occur in practice. Method We re-analysed a cluster-randomised trial comparing two different thresholds for red blood cell transfusion in patients with acute upper gastrointestinal bleeding to explore whether estimates for the participant- and cluster-average effects differed, to provide empirical evidence for whether informative cluster size may be present. For each outcome, we first estimated a participant-average effect using independence estimating equations, which are unbiased under informative cluster size. We then compared this to two further methods: (1) a cluster-average effect estimated using either weighted independence estimating equations or unweighted cluster-level summaries, and (2) estimates from a mixed-effects model or generalised estimating equations with an exchangeable correlation structure. We then performed a small simulation study to evaluate whether observed differences between cluster- and participant-average estimates were likely to occur even if no informative cluster size was present. Results For most outcomes, treatment effect estimates from different methods were similar. However, differences of >10% occurred between participant- and cluster-average estimates for 5 of 17 outcomes (29%). We also observed several notable differences between estimates from mixed-effects models or generalised estimating equations with an exchangeable correlation structure and those based on independence estimating equations. For example, for the EQ-5D VAS score, the independence estimating equation estimate of the participant-average difference was 4.15 (95% confidence interval: −3.37 to 11.66), compared with 2.84 (95% confidence interval: −7.37 to 13.04) for the cluster-average independence estimating equation estimate, and 3.23 (95% confidence interval: −6.70 to 13.16) from a mixed-effects model. Similarly, for thromboembolic/ischaemic events, the independence estimating equation estimate for the participant-average odds ratio was 0.43 (95% confidence interval: 0.07 to 2.48), compared with 0.33 (95% confidence interval: 0.06 to 1.77) from the cluster-average estimator. Conclusion In this re-analysis, we found that estimates from the various approaches could differ, which may be due to the presence of informative cluster size. Careful consideration of the estimand and the plausibility of assumptions underpinning each estimator can help ensure an appropriate analysis methods are used. Independence estimating equations and the analysis of cluster-level summaries (with appropriate weighting for each to correspond to either the participant-average or cluster-average treatment effect) are a desirable choice when informative cluster size is deemed possible, due to their unbiasedness in this setting.

Type: Article
Title: Informative cluster size in cluster-randomised trials: A case study from the TRIGGER trial
Open access status: An open access version is available from UCL Discovery
DOI: 10.1177/17407745231186094
Publisher version: https://doi.org/10.1177/17407745231186094
Language: English
Additional information: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third-party material in this article are included in the Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Inst of Clinical Trials and Methodology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute for Global Health
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Inst of Clinical Trials and Methodology > MRC Clinical Trials Unit at UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute for Global Health > Infection and Population Health
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10173581
Downloads since deposit
1,596Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item