UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Online Matrix Completion with Side Information

Tse, Fai Yu Lisa; (2023) Online Matrix Completion with Side Information. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of Online Matrix Completion with SI.pdf]
Preview
Text
Online Matrix Completion with SI.pdf - Other

Download (8MB) | Preview

Abstract

This thesis considers the problem of binary matrix completion with side information in the online setting and the applications thereof. The side information provides additional information on the rows and columns and can yield improved results compared to when such information is not available. We present efficient and general algorithms in transductive and inductive models. The performance guarantees that we prove are with respect to the matrix complexity measures of the max-norm and the margin complexity. We apply our bounds to the hypothesis class of biclustered matrices. Such matrices can be permuted through the rows and columns into homogeneous latent blocks. This class is a natural choice for our problem since the margin complexity and max-norm of these matrices have an upper bound that is easy to interpret in terms of the latent dimensions. We also apply our algorithms to a novel online multitask setting with RKHS hypothesis classes. In this setting, each task is partitioned in a sequence of segments, where a hypothesis is associated with each segment. Our algorithms are designed to exploit the scenario where the number of associated hypotheses is much smaller than the number of segments. We prove performance guarantees that hold for any segmentation of the tasks and any association of hypotheses to the segments. In the single-task setting, this is analogous to switching with long-term memory in the sense of [Bousquet and Warmuth; 2003].

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Online Matrix Completion with Side Information
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2023. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10175106
Downloads since deposit
740Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item